Quotient topology
Quotient map
Let [ilmath](X,\mathcal{J})[/ilmath] and [ilmath](Y,\mathcal{K})[/ilmath] be topological spaces and let [ilmath]p:X\rightarrow Y[/ilmath] be a surjective map.
[ilmath]p[/ilmath] is a quotient map[1] if we have [math]U\in\mathcal{K}\iff p^{-1}(U)\in\mathcal{J}[/math]
Notes
Stronger than continuity
If we had [ilmath]\mathcal{K}=\{\emptyset,Y\}[/ilmath] then [ilmath]p[/ilmath] is automatically continuous (as it is surjective), the point is that [ilmath]\mathcal{K} [/ilmath] is the largest topology we can define on [ilmath]Y[/ilmath] such that [ilmath]p[/ilmath] is continuous
Definition
If [math](X,\mathcal{J})[/math] is a topological space, [math]A[/math] is a set, and [math]p:(X,\mathcal{J})\rightarrow A[/math] is a surjective map then there exists exactly one topology [math]\mathcal{J}_Q[/math] relative to which [math]p[/math] is a quotient map. This is the quotient topology induced by [math]p[/math]
TODO: Munkres page 138
References
- ↑ Topology - Second Edition - James R Munkres