Characteristic property of the quotient topology

From Maths
Jump to: navigation, search
Stub grade: A
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.
AKA: the Characteristic property of the quotient topology which redirects here

Statement

[ilmath]\xymatrix{ X \ar[d]_{q} \ar[dr]^{f\circ q} & \\ Y \ar[r]_f & Z }[/ilmath]
In this commutative diagram
[ilmath]f[/ilmath] is continuous
[ilmath]\iff[/ilmath]
[ilmath]f\circ q[/ilmath] is continuous
Let [ilmath](X,\mathcal{ J })[/ilmath] and [ilmath](Y,\mathcal{ K })[/ilmath] be topological spaces and let [ilmath]q:X\rightarrow Y[/ilmath] be a quotient map. Then[1]:
  • For any topological space, [ilmath](Z,\mathcal{ H })[/ilmath] a map, [ilmath]f:Y\rightarrow Z[/ilmath] is continuous if and only if the composite map, [ilmath]f\circ q[/ilmath], is continuous

Proof

(Unknown grade)
This page requires one or more proofs to be filled in, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable. Unless there are any caveats mentioned below the statement comes from a reliable source. As always, Warnings and limitations will be clearly shown and possibly highlighted if very important (see template:Caution et al).

References

  1. Introduction to Topological Manifolds - John M. Lee