Orthonormal set

From Maths
Jump to: navigation, search

Definition

Given an orthogonal set, [ilmath]S\subset X[/ilmath], where [ilmath]X[/ilmath] is an i.p.s, we say [ilmath]S[/ilmath] is orthonormal[1] if:

  • [ilmath]\forall x\in S[/ilmath] we have [ilmath]\Vert x\Vert=1[/ilmath]
    (Where [ilmath]\Vert x\Vert:=\sqrt{\langle x,x\rangle}[/ilmath])

Recall that to be an orthogonal set we must have:

  • [ilmath]\forall x,y\in S[x\ne y\implies x\perp y][/ilmath] where:
    • [ilmath]x\perp y[/ilmath] denotes that [ilmath]x[/ilmath] and [ilmath]y[/ilmath] are perpendicular

Questions

  • What about the zero vector, we know that [ilmath]\forall x\in X[\langle x,0\rangle=0][/ilmath]

Examples

See also

References

  1. Functional Analysis - George Bachman and Lawrence Narici