Dynkin system/Definition 2
From Maths
[math]\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }[/math][math]\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}[/math][math]\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }[/math]Given a set [ilmath]X[/ilmath] and a family of subsets of [ilmath]X[/ilmath] we denote [ilmath]\mathcal{D}\subseteq\mathcal{P}(X)[/ilmath] is a Dynkin system[1] on [ilmath]X[/ilmath] if:
- [ilmath]X\in\mathcal{D} [/ilmath]
- [ilmath]\forall A,B\in\mathcal{D}[B\subseteq A\implies A-B\in\mathcal{D}][/ilmath]
- Given a sequence [ilmath](A_n)_{n=1}^\infty\subseteq\mathcal{D}[/ilmath] that is increasing[Note 1] and has [ilmath]\lim_{n\rightarrow\infty}(A_n)=A[/ilmath] we have [ilmath]A\in\mathcal{D}[/ilmath]
Notes
- ↑ Recall this means [ilmath]A_{n}\subseteq A_{n+1} [/ilmath]
References
- ↑ Probability and Stochastics - Erhan Cinlar