- This page shows Initial and Final side by side, for more details on each see their respective pages.
This page is a stub
This page is a stub, so it contains little or minimal information and is on a
to-do list for being expanded.The message provided is:
Fits stub definition
Definition
Let [ilmath]\mathcal{C} [/ilmath] be a category and let [ilmath]S\in\text{Ob}(\mathcal{C})[/ilmath], then we say [ilmath]S[/ilmath] is:
Initial[1]
|
Final[1]
|
if for each [ilmath]A\in\text{Ob}(\mathcal{C})[/ilmath] there exists a unique morphism:
|
[ilmath]\xymatrix{S \ar[r] & A} [/ilmath]
|
[ilmath]\xymatrix{A \ar[r] & S} [/ilmath]
|
References
- ↑ 1.0 1.1 An Introduction to Category Theory - Harold Simmons - 1st September 2010 edition
Category Theory
|
|
Overview of the concepts of Category Theory
|
|
Key objects
|
|
[ilmath]\xymatrix{ & \text{Arrow} \\ \text{Monic} \ar@{^{(}->}[ur] & & \text{Epic} \ar@{^{(}->}[ul] \\ & \text{Bimorphism} \ar@{^{(}->}[ur] \ar@<-0.5ex>@{^{(}->}[ul] \\ {\begin{array}{c}\text{Section}\\ \text{(Split monic)} \end{array} } \ar@{^{(}->}[uu] & & {\begin{array}{c}\text{Retraction}\\ \text{(Split epic)} \end{array} } \ar@<-0.75ex>@{^{(}->}[uu] \\ & \text{Isomorphism} \ar@{^{(}->}[ur] \ar@<-0.5ex>@{^{(}->}[ul] \ar@{^{(}->}[uu] }[/ilmath]
|
|
Typical morphism types (see diagram on right)
|
|
|
Key objects
|
|
|
Primitive constructs
|
|
|
Key constructs
|
|
|
Important examples
|
|
|
Trivial category examples
|
|
|
Common categories
|
|
|