Metric
|
[ilmath]d:X\times X\rightarrow\mathbb{R}_{\ge 0} [/ilmath] Where [ilmath]X[/ilmath] is any set
|
relation to other topological spaces
|
is a
|
|
contains all
|
|
Related objects
|
Induced by norm
|
- [ilmath]d_{\Vert\cdot\Vert}:V\times V\rightarrow\mathbb{R}_{\ge 0}[/ilmath]
- [ilmath]d_{\Vert\cdot\Vert}:(x,y)\mapsto\Vert x-y\Vert[/ilmath]
For [ilmath]V[/ilmath] a vector space over [ilmath]\mathbb{R} [/ilmath] or [ilmath]\mathbb{C} [/ilmath]
|
Induced by inner product
|
An inner product induces a norm:
- [ilmath]\Vert\cdot\Vert_{\langle\cdot,\cdot\rangle}:V\rightarrow\mathbb{R}_{\ge 0}[/ilmath]
- [ilmath]\Vert\cdot\Vert_{\langle\cdot,\cdot\rangle}:x\mapsto\sqrt{\langle x,x\rangle}[/ilmath]
Which induces a metric:
- [ilmath]d_{\langle\cdot,\cdot\rangle}:V\times V\rightarrow\mathbb{R}_{\ge 0}[/ilmath]
- [ilmath]d_{\langle\cdot,\cdot\rangle}:(x,y)\mapsto\sqrt{\langle x-y,x-y\rangle}[/ilmath]
|
A
metric is the most abstract notion of distance. It requires no structure on the underlying set.