Logical and
Warning:That stub grade doesn't exist!
Contents
Definition
Let [ilmath]A[/ilmath] and [ilmath]B[/ilmath] denote logical statements that are either true or false ([ilmath]T[/ilmath] and [ilmath]F[/ilmath] respectively), then [ilmath]A[/ilmath] and [ilmath]B[/ilmath], denoted [ilmath]A\wedge B[/ilmath] has the following truth table:
[ilmath]\mathbf{A} [/ilmath] | [ilmath]\mathbf{B } [/ilmath] | [ilmath]\mathbf{A\wedge B } [/ilmath] |
---|---|---|
[ilmath]F[/ilmath] | [ilmath]F[/ilmath] | [ilmath]F[/ilmath] |
[ilmath]F[/ilmath] | [ilmath]T[/ilmath] | [ilmath]F[/ilmath] |
[ilmath]T[/ilmath] | [ilmath]F[/ilmath] | [ilmath]F[/ilmath] |
[ilmath]T[/ilmath] | [ilmath]T[/ilmath] | [ilmath]T[/ilmath] |
Negation
The only time [ilmath]\neg(A\wedge B)[/ilmath] is false is when [ilmath]A\wedge B[/ilmath] is true, which is only when [ilmath]A[/ilmath] it true and[Note 1] [ilmath]B[/ilmath] is true. All other cases [ilmath]\neg(A\wedge B)[/ilmath] is true, as [ilmath]A\wedge B[/ilmath] is false.
Thus we conclude: [ilmath]\neg(A\wedge B)\iff\big((\neg A)\vee(\neg B)\big)[/ilmath] where [ilmath]\vee[/ilmath] denotes logical or. This is true when either [ilmath]\neg A[/ilmath] or [ilmath]\neg B[/ilmath] is true. These are both false when both [ilmath]A[/ilmath] and [ilmath]B[/ilmath] are true. As the truth table will now show us.
Proof
By extending the table:
[ilmath]\mathbf{A} [/ilmath] | [ilmath]\mathbf{B } [/ilmath] | [ilmath]\mathbf{A\wedge B } [/ilmath] | [ilmath]\mathbf{\neg(A\wedge B)} [/ilmath] | Proof: | [ilmath]\mathbf{\neg A} [/ilmath] | [ilmath]\mathbf{\neg B} [/ilmath] | [ilmath]\mathbf{(\neg A)\vee(\neg B)} [/ilmath] | [ilmath]\mathbf{[\neg(A\wedge B)]\iff[(\neg A)\vee(\neg B)]} [/ilmath] |
---|---|---|---|---|---|---|---|---|
[ilmath]F[/ilmath] | [ilmath]F[/ilmath] | [ilmath]F[/ilmath] | [ilmath]T[/ilmath] | [ilmath]T[/ilmath] | [ilmath]T[/ilmath] | [ilmath]T[/ilmath] | [ilmath]T[/ilmath] | |
[ilmath]F[/ilmath] | [ilmath]T[/ilmath] | [ilmath]F[/ilmath] | [ilmath]T[/ilmath] | [ilmath]T[/ilmath] | [ilmath]F[/ilmath] | [ilmath]T[/ilmath] | [ilmath]T[/ilmath] | |
[ilmath]T[/ilmath] | [ilmath]F[/ilmath] | [ilmath]F[/ilmath] | [ilmath]T[/ilmath] | [ilmath]F[/ilmath] | [ilmath]T[/ilmath] | [ilmath]T[/ilmath] | [ilmath]T[/ilmath] | |
[ilmath]T[/ilmath] | [ilmath]T[/ilmath] | [ilmath]T[/ilmath] | [ilmath]F[/ilmath] | [ilmath]F[/ilmath] | [ilmath]F[/ilmath] | [ilmath]F[/ilmath] | [ilmath]T[/ilmath] |
Notes
- ↑ English "and"