Notes:Chain complex of modules
These come from[1].
Contents
Notes
Chain complex of modules
A chain complex of modules is an infinite sequence:
-
- Caution:Sequences.... start from [ilmath]0[/ilmath]? Or something, so not sure what's going on here - Will resolve later
of modules, [ilmath]C_i[/ilmath] and boundary homomorphisms, [ilmath]\partial_i[/ilmath] such that:
- [ilmath]\partial_n\circ\partial_{n+1}=0[/ilmath]
A positive complex [ilmath]\mathcal{C} [/ilmath] has [ilmath]C_n=0[/ilmath] (the trivial module) for all [ilmath]n<0[/ilmath] and is usually written:
- [ilmath]C_0\leftarrow C_1 \leftarrow \cdots[/ilmath]
A negative complex [ilmath]\mathcal{C} [/ilmath] has [ilmath]C_n=0[/ilmath] for [ilmath]n>0[/ilmath] and is usually re-written for convenience as a positive complex:
- [ilmath]C^0\rightarrow C^1\rightarrow \cdots[/ilmath]
With [ilmath]C^n:=C_{-n}[/ilmath] and module homomorphisms [ilmath]\delta^n:=\partial_{-n}:C^n\rightarrow C^{n+1}[/ilmath]
Homology module
Let [ilmath]\mathcal{C} [/ilmath] be a chain complex of modules. The [ilmath]n[/ilmath]th homology module of [ilmath]\mathcal{C} [/ilmath] is:
- [ilmath]H_n(\mathcal{C}):=\text{Ker}(\partial_n)/\text{Im}(\partial_{n+1})[/ilmath]
We denote the homology class of [ilmath]x\in\text{Ker}(\partial_n)[/ilmath] by [ilmath]\text{cls }z:=z+\text{Im}(\partial_{n+1})[/ilmath]
- Caution:What on Earth is this [ilmath]\text{cls} [/ilmath] business...?
Chain transformation
Let [ilmath]\mathcal{A} [/ilmath] and [ilmath]\mathcal{B} [/ilmath] be chain complexes of modules. A chain transformation:
- [ilmath]\varphi:\mathcal{A}\rightarrow\mathcal{B} [/ilmath]
is a family of module homomorphisms:
- [ilmath]\varphi_n:A_n\rightarrow B_n[/ilmath] such that:
- [ilmath]\forall n\in\text{SOMETHING? Z? N?}[\partial^\mathcal{B}_n\circ\varphi_n=\varphi_{n-1}\circ\partial_n^\mathcal{A}][/ilmath]
Diagramatically:
For example every continuous map [ilmath]f:X\rightarrow Y[/ilmath] induces a chain transformation [ilmath]\mathcal{C}(f):\mathcal{C}(X)\rightarrow\mathcal{C}(Y)[/ilmath] of their singular chain complexes.
In general chain transformations can be added and composed componentwise. The results of which are also chain transformations.
Every chain transformation induces a homomorphism between homology modules
Let [ilmath]\varphi:\mathcal{A}\rightarrow\mathcal{B} [/ilmath] be a chain transformation.