Notes:Hereditary sigma-ring
From Maths
I'm writing down some "facts" so I don't keep redoing them on paper.
Contents
What I want to show
- [ilmath]\mathcal{H}(\sigma_R(S))=\sigma_R(\mathcal{H}(S))[/ilmath] for a system of sets, [ilmath]S[/ilmath].
Both are hereditary, and both are [ilmath]\sigma[/ilmath]-rings.
The result is true!
TODO: Make a theorem out of this!
Showing [ilmath]\mathcal{H}(\sigma_R(S))=\sigma_R(\mathcal{H}(S))[/ilmath]
Which way first?
[ilmath]\mathcal{H}(\sigma_R(S))\subseteq\sigma_R(\mathcal{H}(S))[/ilmath]
- Let [ilmath]A\in\mathcal{H}(\sigma_R(S))[/ilmath] be given. Then:
- [ilmath]\exists B\in\sigma_R(S)[A\in\mathcal{P}(B)][/ilmath]
- Notice that [ilmath]S\subseteq\mathcal{H}(S)[/ilmath] thus:
- [ilmath]\sigma_R(S)\subseteq\sigma_R(\mathcal{H}(S))[/ilmath]
- So [ilmath]B\in\sigma_R(\mathcal{H}(S))[/ilmath]
- Notice that [ilmath]S\subseteq\mathcal{H}(S)[/ilmath] thus:
- As [ilmath]\sigma_R(\mathcal{H}(S))[/ilmath] is hereditary [ilmath]\forall C\in\mathcal{P}(B)[C\in\sigma_R(\mathcal{H}(S))[/ilmath]
- So [ilmath]A\in\sigma_R(\mathcal{H}(S))[/ilmath]
- [ilmath]\exists B\in\sigma_R(S)[A\in\mathcal{P}(B)][/ilmath]
- This shows [ilmath]\mathcal{H}(\sigma_R(S))\subseteq\sigma_R(\mathcal{H}(S))[/ilmath]
[ilmath]\sigma_R(\mathcal{H}(S))\subseteq\mathcal{H}(\sigma_R(S))[/ilmath]
- Let [ilmath]A\in\sigma_R(\mathcal{H}(S))[/ilmath], then, either (by fact 3):
- [ilmath]A\in\mathcal{H}(S)[/ilmath]
- This means: [ilmath]\exists B\in S[A\in\mathcal{P}(B)][/ilmath] (also said as: [ilmath]\exists B\in S[A\subseteq B][/ilmath])
- But [ilmath]S\subseteq\sigma_R(S)[/ilmath], thus:
- [ilmath]B\in\sigma_R(S)[/ilmath]
- But [ilmath]\sigma_R(S)\subseteq\mathcal{H}(\sigma_R(S))[/ilmath] thus:
- [ilmath]B\in\mathcal{H}(\sigma_R(S))[/ilmath]
- As [ilmath]\mathcal{H}(\sigma_R(S))[/ilmath] is hereditary, all subsets of [ilmath]B[/ilmath] are in it.
- As [ilmath]A\in\mathcal{P}(B)[/ilmath] we see [ilmath]A\in\mathcal{H}(\sigma_R(S))[/ilmath] - this completes this half of the proof.
- [ilmath] \exists ({ A_n })_{ n = 1 }^{ \infty }\subseteq \mathcal{H}(S) [\bigcup_{n=1}^\infty A_n=A] [/ilmath]
- Using part 1 we see that: [ilmath]\forall i\in\mathbb{N}[A_i\in\mathcal{H}(\sigma_R(S))][/ilmath]
- But we know [ilmath]\mathcal{H}(\sigma_R(S))[/ilmath] is a [ilmath]\sigma[/ilmath]-ring, thus closed under countable union
- Thus [ilmath]\bigcup_{n=1}^\infty A_n\in\mathcal{H}(\sigma_R(S))[/ilmath]
- But [ilmath]A:=\bigcup_{n=1}^\infty A_n[/ilmath] so
- [ilmath]A\in\mathcal{H}(\sigma_R(S))[/ilmath]
- Using part 1 we see that: [ilmath]\forall i\in\mathbb{N}[A_i\in\mathcal{H}(\sigma_R(S))][/ilmath]
- [ilmath]A\in\mathcal{H}(S)[/ilmath]
- We have shown that in either case, [ilmath]A\in\mathcal{H}(\sigma_R(S))[/ilmath]
Facts
- An hereditary system is a sigma-ring [ilmath]\iff[/ilmath] it is closed under countable unions.
- Thus [ilmath]\sigma_R(\mathcal{H}(S))[/ilmath] is just [ilmath]\mathcal{H}(S)[/ilmath] with the additional property:
- [ilmath]\forall(A_n)_{n=1}^\infty\subseteq\mathcal{H}(S)\left[\bigcup_{n=1}^\infty A_n\in\sigma_R(\mathcal{H}(S))\right][/ilmath]
- Thus [ilmath]\sigma_R(\mathcal{H}(S))[/ilmath] is just [ilmath]\mathcal{H}(S)[/ilmath] with the additional property:
- [ilmath]\mathcal{H}(\mathcal{R})[/ilmath] is a [ilmath]\sigma[/ilmath]-ring (for any [ilmath]\sigma[/ilmath]-ring, [ilmath]\mathcal{R} [/ilmath])
- This means [ilmath]\sigma_R(\mathcal{H}(\mathcal{R}))=\mathcal{H}(\mathcal{R})[/ilmath]
- It also means [ilmath]\mathcal{H}(\sigma_R(S))[/ilmath] is a [ilmath]\sigma[/ilmath]-ring
- [ilmath]\sigma_R(\mathcal{H}(S))[/ilmath] is just [ilmath]\mathcal{H}(S)[/ilmath] closed under countable union.
- [ilmath]\sigma_R(\mathcal{H}(S))[/ilmath] is hereditary
Proof of facts
- An hereditary system is a sigma-ring [ilmath]\iff[/ilmath] it is closed under countable unions.
- Hereditary system is a sigma-ring [ilmath]\implies[/ilmath] closed under countable unions
- It is a [ilmath]\sigma[/ilmath]-ring which means it is closed under countable unions. Done
- A hereditary system closed under countable union [ilmath]\implies[/ilmath] it is a [ilmath]\sigma[/ilmath]-ring
- closed under set-subtraction
- Let [ilmath]A,B\in\mathcal{H} [/ilmath] for some hereditary system [ilmath]\mathcal{H} [/ilmath]. Then:
- [ilmath]A-B\subseteq A[/ilmath], but [ilmath]\mathcal{H} [/ilmath] contains [ilmath]A[/ilmath] and therefore all subsets of [ilmath]A[/ilmath]
- Thus [ilmath]\mathcal{H} [/ilmath] is closed under set subtraction.
- Let [ilmath]A,B\in\mathcal{H} [/ilmath] for some hereditary system [ilmath]\mathcal{H} [/ilmath]. Then:
- Closed under countable union is given.
- closed under set-subtraction
- Hereditary system is a sigma-ring [ilmath]\implies[/ilmath] closed under countable unions
- [ilmath]\mathcal{H}(\mathcal{R})[/ilmath] is a [ilmath]\sigma[/ilmath]-ring (for any [ilmath]\sigma[/ilmath]-ring, [ilmath]\mathcal{R} [/ilmath])
- It is already shown that a hereditary system is closed under set subtraction, only remains to be shown closed under countable union
- Closed under countable union
- Let [ilmath](A_n)_{n=1}^\infty\subseteq\mathcal{H}(\mathcal{R})[/ilmath] (we need to show [ilmath]\implies\bigcup_{n=1}^\infty A_n\in\mathcal{H}(\mathcal{R})[/ilmath])
- This means, for each [ilmath]A_n\in\mathcal{H}(\mathcal{R})[/ilmath] there is a [ilmath]B_n\in\mathcal{R} [/ilmath] with [ilmath]A_n\subseteq B_n[/ilmath] thus:
- [ilmath]\forall(A_n)_{n=1}^\infty\subseteq\mathcal{H}(\mathcal{R})\exists(B_n)_{n=1}^\infty\subseteq\mathcal{R}\forall i\in\mathbb{N}[A_i\subseteq B_i][/ilmath]
- However [ilmath]\mathcal{R} [/ilmath] is a [ilmath]\sigma[/ilmath]-ring, thus:
- Define [ilmath]B:=\bigcup_{n=1}^\infty B_n[/ilmath], notice [ilmath]B\in\mathcal{R} [/ilmath]
- But a union of subsets is a subset of the union, thus:
- [ilmath]\bigcup_{n=1}^\infty A_n\subseteq\bigcup_{n=1}^\infty B_n:=B[/ilmath], thus
- [ilmath]\bigcup_{n=1}^\infty A_n\subseteq B[/ilmath]
- BUT [ilmath]\mathcal{H}(\mathcal{R})[/ilmath] contains all subsets of all things in [ilmath]\mathcal{R} [/ilmath], thus contains all subsets of [ilmath]B[/ilmath].
- [ilmath]\bigcup_{n=1}^\infty A_n\subseteq\bigcup_{n=1}^\infty B_n:=B[/ilmath], thus
- Thus [ilmath]\bigcup_{n=1}^\infty A_n\in\mathcal{H}(\mathcal{R})[/ilmath]
- This means, for each [ilmath]A_n\in\mathcal{H}(\mathcal{R})[/ilmath] there is a [ilmath]B_n\in\mathcal{R} [/ilmath] with [ilmath]A_n\subseteq B_n[/ilmath] thus:
- Thus [ilmath]\mathcal{H}(\mathcal{R})[/ilmath] is closed under countable union.
- Let [ilmath](A_n)_{n=1}^\infty\subseteq\mathcal{H}(\mathcal{R})[/ilmath] (we need to show [ilmath]\implies\bigcup_{n=1}^\infty A_n\in\mathcal{H}(\mathcal{R})[/ilmath])
- [ilmath]\sigma_R(\mathcal{H}(S))[/ilmath] is just [ilmath]\mathcal{H}(S)[/ilmath] closed under countable union.
- Follows from fact 1. As [ilmath]\mathcal{H}(S)[/ilmath] is an hereditary system, the sigma-ring generated by it (the smallest sigma ring containing [ilmath]\mathcal{H}(S)[/ilmath] is just the set with whatever is needed to close it under the operators)
- [ilmath]\sigma_R(\mathcal{H}(S))[/ilmath] is hereditary
- Let [ilmath]A\in\sigma_R(\mathcal{H}(S))[/ilmath] be given. We want to show that [ilmath]\forall B\in\mathcal{P}(A)[/ilmath] that [ilmath]B\in\sigma_R(\mathcal{H}(S))[/ilmath].
- If [ilmath]A\in\mathcal{H}(S)[/ilmath], then [ilmath]\forall B\in\mathcal{P}(A)[B\in\mathcal{H}(S)[/ilmath] but [ilmath]B\in\mathcal{H}(S)\implies B\in\sigma_R(\mathcal{H}(S))[/ilmath]
- We're done in this case.
- OTHERWISE: [ilmath]\exists(A_n)_{n=1}^\infty\subseteq\mathcal{H}(S)\left[\bigcup_{n=1}^\infty A_n=A\right][/ilmath] (by fact 3)
- Let [ilmath]B\in\mathcal{P}(A)[/ilmath] be given.
- Define a new sequence, [ilmath] ({ B_n })_{ n = 1 }^{ \infty }\subseteq \mathcal{H}(S) [/ilmath], where [ilmath]B_i:=A_i\cap B[/ilmath]
- [ilmath]A_i\cap B[/ilmath] is a subset of [ilmath]A_i[/ilmath] and [ilmath]A_i\in\mathcal{H}(S)[/ilmath], as "hereditary" means "contains all subsets of" [ilmath]A_i\cap B\subseteq A_i[/ilmath] thus [ilmath]A_i\cap B:=B_i\in\mathcal{H}(S)[/ilmath]
- Clearly [ilmath]B=\bigcup_{n=1}^\infty B_n[/ilmath] (as [ilmath]B\subseteq A[/ilmath] and [ilmath]A=\bigcup_{n=1}^\infty A_n[/ilmath])
- As [ilmath]\sigma_R(\mathcal{H}(S)[/ilmath] contains all countable unions of things in [ilmath]\mathcal{H}(S)[/ilmath] we know:
- [ilmath]\bigcup_{n=1}^\infty B_n=B\in\sigma_R(\mathcal{H}(S))[/ilmath]
- Define a new sequence, [ilmath] ({ B_n })_{ n = 1 }^{ \infty }\subseteq \mathcal{H}(S) [/ilmath], where [ilmath]B_i:=A_i\cap B[/ilmath]
- We have shown [ilmath]B\in\sigma_R(\mathcal{H}(S))[/ilmath]
- Let [ilmath]B\in\mathcal{P}(A)[/ilmath] be given.
- If [ilmath]A\in\mathcal{H}(S)[/ilmath], then [ilmath]\forall B\in\mathcal{P}(A)[B\in\mathcal{H}(S)[/ilmath] but [ilmath]B\in\mathcal{H}(S)\implies B\in\sigma_R(\mathcal{H}(S))[/ilmath]
- We have completed the proof
- Let [ilmath]A\in\sigma_R(\mathcal{H}(S))[/ilmath] be given. We want to show that [ilmath]\forall B\in\mathcal{P}(A)[/ilmath] that [ilmath]B\in\sigma_R(\mathcal{H}(S))[/ilmath].
TODO: It seems, "hereditary sigma-ring" is the same as "sigma-ideal".