Semantics of logical connectives (FOL)
Definition
Let [ilmath]\mathscr{L} [/ilmath] be a given first order language and let [ilmath]C[/ilmath] denote the collection of all logical connective symbols[Note 1], the semantics of a logical connective symbol[1] is a function from the Cartesian product of one or more set of truth values to the truth values, written [ilmath]\mathbf{B}_*[/ilmath] where [ilmath]*[/ilmath] is a logical connective symbol, [ilmath]*\in\{\neg,\vee,\wedge,\rightarrow,\leftrightarrow\} [/ilmath], this mapping is commonly called the truth table[1] of the connective.
Suppose [ilmath]X[/ilmath] and [ilmath]Y[/ilmath] are variables which may only take on truth values (eg, are the semantics of a formula) then we define [ilmath]\mathbf{B}_*[/ilmath] as follows:
Uniary connectives
Truth table for logical negation
[ilmath]\mathbf{X} [/ilmath] | [ilmath]\mathbf{B}_\neg(X)[/ilmath] |
---|---|
[ilmath]T[/ilmath] | [ilmath]F[/ilmath] |
[ilmath]F[/ilmath] | [ilmath]T[/ilmath] |
Binary connectives
Truth table for [ilmath]\vee[/ilmath], [ilmath]\wedge[/ilmath], [ilmath]\rightarrow[/ilmath], [ilmath]\leftrightarrow[/ilmath], that is logical or, logical and, logical implication and logical equivalence respectively:
[ilmath]\mathbf{X} [/ilmath] | [ilmath]\mathbf{Y} [/ilmath] | [ilmath]\mathbf{B}_\vee(X,Y)[/ilmath] | [ilmath]\mathbf{B}_\wedge(X,Y)[/ilmath] | [ilmath]\mathbf{B}_\rightarrow(X,Y)[/ilmath] | [ilmath]\mathbf{B}_\leftrightarrow(X,Y)[/ilmath] |
---|---|---|---|---|---|
[ilmath]F[/ilmath] | [ilmath]F[/ilmath] | [ilmath]F[/ilmath] | [ilmath]F[/ilmath] | [ilmath]T[/ilmath] | [ilmath]T[/ilmath] |
[ilmath]F[/ilmath] | [ilmath]T[/ilmath] | [ilmath]T[/ilmath] | [ilmath]F[/ilmath] | [ilmath]T[/ilmath] | [ilmath]F[/ilmath] |
[ilmath]T[/ilmath] | [ilmath]F[/ilmath] | [ilmath]T[/ilmath] | [ilmath]F[/ilmath] | [ilmath]F[/ilmath] | [ilmath]F[/ilmath] |
[ilmath]T[/ilmath] | [ilmath]T[/ilmath] | [ilmath]T[/ilmath] | [ilmath]T[/ilmath] | [ilmath]T[/ilmath] | [ilmath]T[/ilmath] |
See next
Notes
- ↑ Usually this means:
- [ilmath]\neg[/ilmath], [ilmath]\vee[/ilmath], [ilmath]\wedge[/ilmath], [ilmath]\rightarrow[/ilmath] and [ilmath]\leftrightarrow[/ilmath]