Topology generated by a basis/Statement

From Maths
Jump to: navigation, search
Grade: A
This page requires references, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable, it just means that the author of the page doesn't have a book to hand, or remember the book to find it, which would have been a suitable reference.
The message provided is:
I could do this now but I can't be bothered!

Statement

Let [ilmath]X[/ilmath] be a set and let [ilmath]\mathcal{B}\in\mathcal{P}(\mathcal{P}(X))[/ilmath] be any collection of subsets of [ilmath]X[/ilmath], then:

  • [ilmath](X,\{\bigcup\mathcal{A}\ \vert\ \mathcal{A}\in\mathcal{P}(\mathcal{B})\})[/ilmath] is a topological space with [ilmath]\mathcal{B} [/ilmath] being a basis for the topology [ilmath]\{\bigcup\mathcal{A}\ \vert\ \mathcal{A}\in\mathcal{P}(\mathcal{B})\}[/ilmath]

if and only if

  • we have both of the following conditions:
    1. [ilmath]\bigcup\mathcal{B}=X[/ilmath] (or equivalently: [ilmath]\forall x\in X\exists B\in\mathcal{B}[x\in B][/ilmath][Note 1]) and
    2. [ilmath]\forall U,V\in\mathcal{B}\big[U\cap V\neq\emptyset\implies \forall x\in U\cap V\exists B\in\mathcal{B}[x\in W\wedge W\subseteq U\cap V]\big][/ilmath][Note 2]
      • Caveat:[ilmath]\forall U,V\in\mathcal{B}\ \forall x\in U\cap V\ \exists W\in\mathcal{B}[x\in W\subseteq U\cap V][/ilmath] is commonly said or written; however it is wrong, this is slightly beyond just abuse of notation.[Note 3]

Notes

  1. By the implies-subset relation [ilmath]\forall x\in X\exists B\in\mathcal{B}[x\in B][/ilmath] really means [ilmath]X\subseteq\bigcup\mathcal{B} [/ilmath], as we only require that all elements of [ilmath]X[/ilmath] be in the union. Not that all elements of the union are in [ilmath]X[/ilmath]. However:
    • [ilmath]\mathcal{B}\in\mathcal{P}(\mathcal{P}(X))[/ilmath] by definition. So clearly (or after some thought) the reader should be happy that [ilmath]\mathcal{B} [/ilmath] contains only subsets of [ilmath]X[/ilmath] and he should see that we cannot as a result have an element in one of these subsets that is not in [ilmath]X[/ilmath].
    Thus [ilmath]\forall B\in\mathcal{B}[B\in\mathcal{P}(X)][/ilmath] which is the same as (by power-set and subset definitions) [ilmath]\forall B\in\mathcal{B}[B\subseteq X][/ilmath].
  2. We could of course write:
    • [ilmath]\forall U,V\in\mathcal{B}\ \forall x\in \bigcup\mathcal{B}\ \exists W\in\mathcal{B}[(x\in U\cap V)\implies(x\in W\wedge W\subseteq U\cap V)][/ilmath]
  3. Suppose that [ilmath]U,V\in\mathcal{B} [/ilmath] are given but disjoint, then there are no [ilmath]x\in U\cap V[/ilmath] to speak of, and [ilmath]x\in W[/ilmath] may be vacuously satisfied by the absence of an [ilmath]X[/ilmath], however:
    • [ilmath]x\in W\subseteq U\cap V[/ilmath] is taken to mean [ilmath]x\in W[/ilmath] and [ilmath]W\subseteq U\cap V[/ilmath], so we must still show [ilmath]\exists W\in\mathcal{B}[W\subseteq U\cap V][/ilmath]
      • This is not always possible as [ilmath]W[/ilmath] would have to be [ilmath]\emptyset[/ilmath] for this to hold! We do not require [ilmath]\emptyset\in\mathcal{B} [/ilmath] (as for example in the metric topology)

References