Difference between revisions of "Inner product"
From Maths
m |
m (→Properties) |
||
Line 13: | Line 13: | ||
==Properties== | ==Properties== | ||
Notice that <math>\langle\cdot,\cdot\rangle</math> is also linear (ish) in its second argument as: | Notice that <math>\langle\cdot,\cdot\rangle</math> is also linear (ish) in its second argument as: | ||
− | *<math>\langle x,\lambda y+\mu z\rangle = \overline{\langle \lambda y+\mu z, x\rangle}</math><math>=\overline{\lambda\langle y,x\rangle + \mu\langle z,x\rangle}</math><math>=\bar{\lambda}\overline{\langle y,x\rangle}+\bar{\mu}\overline{\langle z,x\rangle}</math><math>=\bar{\lambda}\langle x,y\rangle+\bar{\mu}\langle x,z\rangle</math> | + | {{Begin Inline Theorem}} |
− | + | * <math>\langle x,\lambda y+\mu z\rangle =\bar{\lambda}\langle x,y\rangle+\bar{\mu}\langle x,z\rangle</math> | |
+ | {{Begin Inline Proof}} | ||
+ | :<math>\langle x,\lambda y+\mu z\rangle</math> | ||
+ | :: <math>=\overline{\langle \lambda y+\mu z, x\rangle}</math> | ||
+ | :: <math>=\overline{\lambda\langle y,x\rangle + \mu\langle z,x\rangle}</math> | ||
+ | :: <math>=\bar{\lambda}\overline{\langle y,x\rangle}+\bar{\mu}\overline{\langle z,x\rangle}</math> | ||
+ | : <math>=\bar{\lambda}\langle x,y\rangle+\bar{\mu}\langle x,z\rangle</math> | ||
+ | : As required. | ||
+ | {{End Proof}}{{End Theorem}} | ||
From this we may conclude the following: | From this we may conclude the following: | ||
* <math>\langle x,\lambda y\rangle = \bar{\lambda}\langle x,y\rangle</math> and | * <math>\langle x,\lambda y\rangle = \bar{\lambda}\langle x,y\rangle</math> and | ||
* <math>\langle x,y+z\rangle = \langle x,y\rangle + \langle x,z\rangle</math> | * <math>\langle x,y+z\rangle = \langle x,y\rangle + \langle x,z\rangle</math> | ||
This leads to the most general form: | This leads to the most general form: | ||
− | |||
{{Begin Inline Theorem}} | {{Begin Inline Theorem}} | ||
− | + | * {{M|1=\langle au+bv,cx+dy\rangle=a\overline{c}\langle u,x\rangle+a\overline{d}\langle u,y\rangle+b\overline{c}\langle v,x\rangle+b\overline{d}\langle v,y\rangle}} - which isn't worth remembering! | |
{{Begin Inline Proof}} | {{Begin Inline Proof}} | ||
− | + | :'''Proof:''' | |
+ | :{{M|1=\langle au+bv,cx+dy\rangle}} | ||
+ | ::{{M|1= =a\langle u,cx+dy\rangle+b\langle v,cx+dy\rangle}} | ||
+ | ::{{M|1= =a\overline{\langle cx+dy,u\rangle}+b\overline{\langle cx+dy,v\rangle} }} | ||
+ | ::{{M|1= =a(\overline{c\langle x,u\rangle} + \overline{d\langle y,u\rangle})+b(\overline{c\langle x,v\rangle}+\overline{d\langle y,v\rangle})}} | ||
+ | :{{M|1= =a\overline{c}\langle u,x\rangle+a\overline{d}\langle u,y\rangle+b\overline{c}\langle v,x\rangle+b\overline{d}\langle v,y\rangle}} | ||
+ | : As required | ||
{{End Proof}}{{End Theorem}} | {{End Proof}}{{End Theorem}} | ||
Revision as of 18:23, 10 July 2015
Contents
[hide]Definition
Given a vector space, (V,F) (where F is either R or C), an inner product[1][2][3] is a map:
- ⟨⋅,⋅⟩:V×V→R (or sometimes ⟨⋅,⋅⟩:V×V→C)
Such that:
- ⟨x,y⟩=¯⟨y,x⟩ (where the bar denotes Complex conjugate)
- Or just ⟨x,y⟩=⟨y,x⟩ if the inner product is into R
- ⟨λx+μy,z⟩=λ⟨y,z⟩+μ⟨x,z⟩ ( linearity in first argument )
- This may be alternatively stated as:
- ⟨λx,y⟩=λ⟨x,y⟩ and ⟨x+y,z⟩=⟨x,z⟩+⟨y,z⟩
- This may be alternatively stated as:
- ⟨x,x⟩≥0 but specifically:
- ⟨x,x⟩=0⟺x=0
Properties
Notice that ⟨⋅,⋅⟩ is also linear (ish) in its second argument as:
From this we may conclude the following:
- ⟨x,λy⟩=ˉλ⟨x,y⟩ and
- ⟨x,y+z⟩=⟨x,y⟩+⟨x,z⟩
This leads to the most general form:
Examples
See also
References
- Jump up ↑ http://en.wikipedia.org/w/index.php?title=Inner_product_space&oldid=651022885
- Jump up ↑ Functional Analysis I - Lecture Notes - Richard Sharp - Sep 2014
- Jump up ↑ Functional Analysis - George Bachman and Lawrence Narici