Difference between revisions of "Cauchy sequence/Short definition"
From Maths
(Created page with "Given a metric space {{M|(X,d)}} and a sequence {{M|1=(x_n)_{n=1}^\infty\subseteq X}} is said to be a ''Cauchy sequence''<ref name="FA">Functiona...") |
m |
||
Line 1: | Line 1: | ||
− | Given a [[Metric space|metric space]] {{M|(X,d)}} and a [[Sequence|sequence]] {{M|1=(x_n)_{n=1}^\infty\subseteq X}} is said to be a ''Cauchy sequence''<ref name="FA">Functional Analysis - George Bachman and Lawrence Narici</ref>{{rAPIKM}} if: | + | <onlyinclude>Given a [[Metric space|metric space]] {{M|(X,d)}} and a [[Sequence|sequence]] {{M|1=(x_n)_{n=1}^\infty\subseteq X}} is said to be a ''Cauchy sequence''<ref name="FA">Functional Analysis - George Bachman and Lawrence Narici</ref>{{rAPIKM}} if: |
− | * {{M|\forall\epsilon > 0\exists N\in\mathbb{N}\forall n,m\in\mathbb{N}[n\ge m> N\implies d(x_m,x_n)<\epsilon]}} | + | * {{M|\forall\epsilon > 0\exists N\in\mathbb{N}\forall n,m\in\mathbb{N}[n\ge m> N\implies d(x_m,x_n)<\epsilon]}}</onlyinclude> |
− | < | + | |
==Notes== | ==Notes== | ||
<references group="Note"/> | <references group="Note"/> | ||
Line 7: | Line 6: | ||
<references/> | <references/> | ||
{{Definition|Real Analysis|Functional Analysis|Topology|Metric Space}} | {{Definition|Real Analysis|Functional Analysis|Topology|Metric Space}} | ||
− |
Latest revision as of 13:55, 5 December 2015
Given a metric space (X,d) and a sequence (xn)∞n=1⊆X is said to be a Cauchy sequence[1][2] if:
- ∀ϵ>0∃N∈N∀n,m∈N[n≥m>N⟹d(xm,xn)<ϵ]
Notes
References
- Jump up ↑ Functional Analysis - George Bachman and Lawrence Narici
- Jump up ↑ Analysis - Part 1: Elements - Krzysztof Maurin