Cauchy sequence

From Maths
Jump to: navigation, search
Stub grade: A
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.

Definition

Given a metric space (X,d) and a sequence (xn)n=1X is said to be a Cauchy sequence[1][2] if:

  • ϵ>0NNn,mN[nm>Nd(xm,xn)<ϵ][Note 1][Note 2]

In words it is simply:

  • For any arbitrary distance apart, there exists a point such that any two points in the sequence after that point are within that arbitrary distance apart.

Notes

Relation to convergence


TODO: Flesh this out


See also

Notes

  1. Jump up Note that in Krzysztof Maurin's notation this is written as ϵ>0NNm,n>Nd(xn,xm)<ϵ - which is rather elegant
  2. Jump up It doesn't matter if we use nm>N or n,mN because if n=m then d(xn,xm)=0, it doesn't matter which way we consider them (as n>m or m>n) for d(x,y)=d(y,x) - I use the ordering to give the impression that as n goes out ahead it never ventures far (as in ϵ-distance}}) from xm. This has served me well

References

  1. Jump up Functional Analysis - George Bachman and Lawrence Narici
  2. Jump up Analysis - Part 1: Elements - Krzysztof Maurin