Inner product
From Maths
Contents
[<hidetoc>]Definition
Given a vector space, (V,F) (where F is either R or C), an inner product[1][2][3] is a map:
- ⟨⋅,⋅⟩:V×V→R (or sometimes ⟨⋅,⋅⟩:V×V→C)
Such that:
- ⟨x,y⟩=¯⟨y,x⟩ (where the bar denotes Complex conjugate)
- Or just ⟨x,y⟩=⟨y,x⟩ if the inner product is into R
- ⟨λx+μy,z⟩=λ⟨y,z⟩+μ⟨x,z⟩ ( linearity in first argument )
- This may be alternatively stated as:
- ⟨λx,y⟩=λ⟨x,y⟩ and ⟨x+y,z⟩=⟨x,z⟩+⟨y,z⟩
- This may be alternatively stated as:
- ⟨x,x⟩≥0 but specifically:
- ⟨x,x⟩=0⟺x=0
Terminology
Given a vector space X over either R or C, and an inner product ⟨⋅,⋅⟩:X×X→F we call the space (X,⟨⋅,⋅⟩) an:
- Inner product space (or i.p.s for short)[3] or sometimes a
- pre-hilbert space[3]
Properties
Notice that ⟨⋅,⋅⟩ is also linear (ish) in its second argument as:
From this we may conclude the following:
- ⟨x,λy⟩=ˉλ⟨x,y⟩ and
- ⟨x,y+z⟩=⟨x,y⟩+⟨x,z⟩
This leads to the most general form:
[<collapsible-expand>]
- ⟨au+bv,cx+dy⟩=a¯c⟨u,x⟩+a¯d⟨u,y⟩+b¯c⟨v,x⟩+b¯d⟨v,y⟩ - which isn't worth remembering!
Notation
Typically, ⟨⋅,⋅⟩ is the notation for inner products, however I have seen some authors use ⟨a,b⟩ to denote the ordered pair containing a and b. Also, notably[3] use (⋅,⋅) for an inner product (and ⟨⋅,⋅⟩ for an ordered pair!)
Immediate theorems
Here ⟨⋅,⋅⟩:X×X→C is an inner product
[<collapsible-expand>]
Theorem: if ∀x∈X[⟨x,y⟩=0] then y=0
Norm induced by
- Given an inner product space (X,⟨⋅,⋅⟩) we can define a norm as follows[3]:
- ∀x∈X the inner product induces the norm ∥x∥:=√⟨x,x⟩
TODO: Find out what this is called, eg compared to the metric induced by a norm
Prominent examples
See also
References
- <cite_references_link_accessibility_label> ↑ http://en.wikipedia.org/w/index.php?title=Inner_product_space&oldid=651022885
- <cite_references_link_accessibility_label> ↑ Functional Analysis I - Lecture Notes - Richard Sharp - Sep 2014
- ↑ <cite_references_link_many_accessibility_label> 3.0 3.1 3.2 3.3 3.4 Functional Analysis - George Bachman and Lawrence Narici