Product topology

From Maths
Revision as of 20:32, 23 September 2016 by Alec (Talk | contribs) (Creating page (scrapped old content). Refactoring started.)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
Grade: A
This page is currently being refactored (along with many others)
Please note that this does not mean the content is unreliable. It just means the page doesn't conform to the style of the site (usually due to age) or a better way of presenting the information has been discovered.
The message provided is:
As a part of the topology patrol
Grade: A
This page requires references, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable, it just means that the author of the page doesn't have a book to hand, or remember the book to find it, which would have been a suitable reference.
The message provided is:
Check Munkres and Topological Manifolds

Definition

Let ((Xα,Jα))αI be an arbitrary family of topological spaces. The product topology is a new topological space defined on the set αIXα (herein we define X:=αIXα for notational convenience, where αIXα denotes the Cartesian product of the family (Xα)αI) with topology, J defined as:

  • the topology generated by the basis B, where B is defined as follows:
    • B:={αIUα | (βI[UβJβ])|{Uα | αIUαXα}|N} Caution:I need to check this expression
      • In words, B is the set that contains all Cartesian products of open sets, UαJα given only finitely many of those open sets are not equal to Xα itself.

We claim:

  1. B satisfies the conditions for a topology to be generated by a basis, thus yielding a topology on X, and
  2. this topology is the unique topology on X for which the characteristic property (see below) holds

Characteristic property


TODO: Caption


Let ((Xα,Jα))αI be an arbitrary family of topological spaces and let (Y,K) be a topological space. Consider (αIXα,J) as a topological space with topology (J) given by the product topology of ((Xα,Jα))αI. Lastly, let f:YαIXα be a map, and for αI define fα:YXα as fα=παf (where πα denotes the αth canonical projection of the product topology) then:
  • f:YαIXα is continuous

if and only if

  • βI[fβ:YXβ is continuous] - in words, each component function is continuous

TODO: Link to diagram



Notes

References








2nd generation page

Note: for finite collections of topological spaces the product and box topology agree. In general however the box topology does not satisfy the characteristic property of the product topology.

Definition

Given an arbitrary family of topological spaces, ((Xα,Jα))αI the product topology is a topology defined on the set αIXα (where denotes the Cartesian product) to be the topology generated by the basis:

  • B:={αIUα| (Uα)αIαIJα  |{Uα| UαXα}|N}

The family of functions, {πα:βIXβXα given by πα:(xγ)γIxα | αI} are called the canonical projections for the product.

Claim 1: this is a basis for a topology,
Claim 2: the canonical projections are continuous

Characteristic property


TODO: Caption


Let ((Xα,Jα))αI be an arbitrary family of topological spaces and let (Y,K) be a topological space. Consider (αIXα,J) as a topological space with topology (J) given by the product topology of ((Xα,Jα))αI. Lastly, let f:YαIXα be a map, and for αI define fα:YXα as fα=παf (where πα denotes the αth canonical projection of the product topology) then:
  • f:YαIXα is continuous

if and only if

  • βI[fβ:YXβ is continuous] - in words, each component function is continuous

TODO: Link to diagram



OLD PAGE

Note: Very often confused with the Box topology see Product vs box topology for details

Definition

Given an arbitrary collection of indexed (Xα,Jα)αI topological spaces, we define the product topology as follows:

  • Let X:=αIXα be a set imbued with the topology generated by the basis:
  • B={αIUα| αI[UαJα]nN[|{Uα|UαXα}|=n]}
    • That is to say the basis set contains all the products of open sets where the product has a finite number of elements that are not the entirety of their space.
    • For the sake of contrast, the Box topology has this definition for a basis:
      Bbox={αIUα| αI[UαJα]} - the product of any collection of open sets
  • Note that in the case of a finite number of spaces, say (Xi,Ji)ni=1 then the topology on ni=1Xi is generated by the basis:
    • Bfinite={ni=1Ui| i{1,2,,n}[UiJi]} (that is to say the box/product topologies agree)


Characteristic property

Here pi denotes the canonical projection, sometimes πi is used - I avoid using π because it is too similar to (at least with my handwriting) - I have seen books using both of these conventions

TODO: Finish off


(Commutes αI)