Poisson mixture
Before we start I must point out something which may without deeper thought appear to be a Poisson mixture, recall that:
- The addition of two Poisson distributions is itself a Poisson distribution, and
- TODO: Link hereIf we have a Poisson distribution and each of its events being noticed i.i.d and BORV(p) then the observed process is also a Poisson distribution
- That is, let X\sim\text{Poi}(\lambda) and let (X_i)_{i\in\mathbb{N} } be the events detected by this "process". Let (D_i)_{i\in\mathbb{N} } be the detection of each event, i.i.d and \forall i\in\mathbb{N}\big[D_i\sim\text{Borv}(p)\big] then Y\sim\text{Poi}(p\lambda) is the distribution of the (D_i)_{i\in\mathbb{N} } events.
- This is not phrased very well.
- That is, let X\sim\text{Poi}(\lambda) and let (X_i)_{i\in\mathbb{N} } be the events detected by this "process". Let (D_i)_{i\in\mathbb{N} } be the detection of each event, i.i.d and \forall i\in\mathbb{N}\big[D_i\sim\text{Borv}(p)\big] then Y\sim\text{Poi}(p\lambda) is the distribution of the (D_i)_{i\in\mathbb{N} } events.
Contents
[hide]Definition
Let (\lambda_i)_{i\eq 1}^n\subseteq\mathbb{R}_{\ge 0} be given, and let \big(X_i\sim\text{Poi}(\lambda_i)\big)_{i\eq 1}^n be a sequence of \mathbb{N} -valued Poisson distributed random variables, then
Let \mathcal{C} be an N-valued random variable where N:\eq\{1,2,3,\ldots,n\}\subseteq\mathbb{N} ¸ next
- Define X to be an \mathbb{N} -valued random variable as follows:
- for any k\in\mathbb{N} , define: \P{X\eq k}:\eq \sum^n_{i\eq 1}\Big(\P{\mathcal{C}\eq i}\cdot\Pcond{X_i \eq k}{\mathcal{C}\eq i}\Big) - which is just a standard composition TODO: Is this law of total probability?
- Notice: \P{X\eq k}\eq\sum^n_{i\eq 1}\Big(\P{\mathcal{C}\eq i}\cdot\P{X_i\eq m}\Big) TODO: Justification?
- \eq \sum^n_{i\eq 1}\left(\P{\mathcal{C}\eq i}\cdot\frac{e^{-\lambda_i}\cdot \lambda_i^k}{k!} \right)
- \eq \frac{1}{k!}\sum^n_{i\eq 1}\Big(e^{-\lambda_i}\cdot\P{\mathcal{C}\eq i}\cdot \lambda_i^k\Big)
- Notice: \P{X\eq k}\eq\sum^n_{i\eq 1}\Big(\P{\mathcal{C}\eq i}\cdot\P{X_i\eq m}\Big)
- for any k\in\mathbb{N} , define: \P{X\eq k}:\eq \sum^n_{i\eq 1}\Big(\P{\mathcal{C}\eq i}\cdot\Pcond{X_i \eq k}{\mathcal{C}\eq i}\Big) - which is just a standard composition
The idea is that we first let (x_i)_{i\eq 1}^n be a sample from the (X_i)_{i\eq 1}^n random variables. Let c be a sample of \mathcal{C} , then x, our sample of X is:
- x:\eq x_c
Special case: n\eq 2
Let \P{\mathcal{C}\eq 1}:\eq p, thus \P{\mathcal{C}\eq 2}\eq 1-p, then:
- \P{X\eq k}\eq\frac{1}{k!}\Big(p e^{-\lambda_1} \lambda_1^k+(1-p)e^{-\lambda_2}\lambda_2^k\Big)
Finding the parameters would be an optimisation problem (minimise error with 3 parameters here, \lambda_1,\ \lambda_2\in\mathbb{R}_{\ge 0} and p\in[0,1]\subseteq\mathbb{R}