Alec's remaining probability bound
From Maths
Stub grade: A**
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
\newcommand{\P}[2][]{\mathbb{P}#1{\left[{#2}\right]} } \newcommand{\Pcond}[3][]{\mathbb{P}#1{\left[{#2}\!\ \middle\vert\!\ {#3}\right]} } \newcommand{\Plcond}[3][]{\Pcond[#1]{#2}{#3} } \newcommand{\Prcond}[3][]{\Pcond[#1]{#2}{#3} }
\newcommand{\E}[1]{ {\mathbb{E}{\left[{#1}\right]} } } \newcommand{\Mdm}[1]{\text{Mdm}{\left({#1}\right) } } \newcommand{\Var}[1]{\text{Var}{\left({#1}\right) } } \newcommand{\ncr}[2]{ \vphantom{C}^{#1}\!C_{#2} }
Contents
[hide]Statement
Let X be a non-negative real random variable, then we claim:
- \forall\alpha\in\mathbb{R}_{>0}\left[\P{X\ge \alpha}\le \frac{\E{X} }{\alpha} \right], which we may also write: \forall\beta\in\mathbb{R}_{>0}\left[\P{X\ge \beta\E{X} }\le \frac{1 }{\beta} \right]Caveat:Unconfirmed
Proof
Recall that \E{X}:\eq\int^\infty_0 xf(x)\mathrm{d}x for f(x) the probability density function.
- Let \alpha\in\mathbb{R}_{>0} be given.
- Now notice that if we define:
- I_1:\eq\int_0^\alpha xf(x)\mathrm{d}x and
- I_2:\eq\int_\alpha^\infty xf(x)\mathrm{d}x
- that \E{X}\eq I_1+I_2
- Next we observe that:
- I_1\ge \int^\alpha_0 0f(x)\mathrm{d}x\eq 0 TODO: BY WHAT THEOREM? MEASURE THEORY NEEDED!and,
- I_2\ge \int_\alpha^\infty \alpha f(x)\mathrm{d}x\eq \alpha\P{X\ge\alpha}
- I_1\ge \int^\alpha_0 0f(x)\mathrm{d}x\eq 0
- We see that \E{X}\ge 0+\alpha\P{X\ge\alpha}
- As \alpha>0 we may divide both sides by \alpha to obtain:
- \P{X\ge\alpha}\le \frac{\E{X} }{\alpha}
- Now notice that if we define:
Todo
Make this statement formal, I hate one integral for real one for natural numbers (summation)