Jacobian

From Maths
Jump to: navigation, search

Sometimes called "Jacobian Matrix", or "differential".

Common definition

Given a function f:RmRn

(I use the convention of m first because it takes it from m to n) the:

  • differential of f at x, denoted dfx
    or Dfx
    which I prefer, as you often find df
    in a fraction involving dx
  • Jacobian matrix of f at x often denoted Jf(x)

Are given by:

Dfx:RmRn

, Dfx=(f1x1f1xmfnx1fnxm)

This is a n-by-m matrix using my convention.

[Expand]

How to remember which way round this matrix goes