Limit
From Maths
Definition
A limit allows us to sidestep the notion of infinity and to allow us to potentially extend the domain of functions
Class | Name | Form | Meaning |
---|---|---|---|
Limit of a sequence | converging to a | lim |
|
Tending towards +\infty | \lim_{n\rightarrow\infty}(a_n)=+\infty |
| |
Tending towards -\infty | \lim_{n\rightarrow\infty}(a_n)=-\infty |
| |
Diverging to \infty | \lim_{n\rightarrow\infty}(a_n)=\infty |
| |
Limit of a function at x_0 | converging to \ell | \lim_{x\rightarrow x_0}(f(x))=\ell | \forall \epsilon>0\exists\delta>0\forall x\in X\left[0<d(x,x_0)<\delta\implies d'(f(x),\ell)<\epsilon\right] |
TODO: I like the idea of a summary page, but it needs to link to the right pages and have definitions in place
(See Infinity)