Limit

From Maths
Jump to: navigation, search

Definition

A limit allows us to sidestep the notion of infinity and to allow us to potentially extend the domain of functions

Class Name Form Meaning
Limit of a sequence converging to a lim
  • \forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n> N\implies |a_n-a|<\epsilon] - first form
  • \forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n> N\implies d(a_n,a)<\epsilon] - Metric space (X,d)
  • \forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}\exists U\in\mathcal{J}[a\in U\wedge(n> N \implies a_n\in U)] - Topological space (X,\mathcal{J})
Tending towards +\infty \lim_{n\rightarrow\infty}(a_n)=+\infty
  • \forall C>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n> N\implies a_n> C]
Tending towards -\infty \lim_{n\rightarrow\infty}(a_n)=-\infty
  • \forall C<0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n> N\implies a_n< C]
Diverging to \infty \lim_{n\rightarrow\infty}(a_n)=\infty
  • \forall C>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n> N\implies |a_n|> C]
Limit of a function at x_0 converging to \ell \lim_{x\rightarrow x_0}(f(x))=\ell \forall \epsilon>0\exists\delta>0\forall x\in X\left[0<d(x,x_0)<\delta\implies d'(f(x),\ell)<\epsilon\right]



TODO: I like the idea of a summary page, but it needs to link to the right pages and have definitions in place



(See Infinity)