Difference between revisions of "Variance"

From Maths
Jump to: navigation, search
(Created page with "==Definition== Given a random variable {{M|X}} we define the '''variance''' of {{M|X}} as follows: * <math>\text{Var}(X)=\mathbb{E}\left[(X-\mu)^2\right]</...")
 
(Definition: integrable r.v.)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
==Definition==
 
==Definition==
Given a [[Random variable|random variable]] {{M|X}} we define the '''variance''' of {{M|X}} as follows:
+
Given an [[Integral (measure theory)|integrable]] [[Random variable|random variable]] {{M|X}} we define the '''variance''' of {{M|X}} as follows:
 
* <math>\text{Var}(X)=\mathbb{E}\left[(X-\mu)^2\right]</math> where {{M|\mu}} is the ''mean'' or [[Expected value|expected value]] of {{M|X}}
 
* <math>\text{Var}(X)=\mathbb{E}\left[(X-\mu)^2\right]</math> where {{M|\mu}} is the ''mean'' or [[Expected value|expected value]] of {{M|X}}
 
  
 
==Other forms==
 
==Other forms==
 
{{Begin Theorem}}
 
{{Begin Theorem}}
Theorem: <math>\text{Var}(X)=\mathbb{E}[X^2]+(\mathbb{E}[X])^2</math>
+
Theorem: <math>\text{Var}(X)=\mathbb{E}[X^2]-(\mathbb{E}[X])^2</math>
 
{{Begin Proof}}
 
{{Begin Proof}}
 
* <math>\text{Var}(X)=\mathbb{E}\left[(X-\mu)^2\right]</math>
 
* <math>\text{Var}(X)=\mathbb{E}\left[(X-\mu)^2\right]</math>
Line 13: Line 12:
 
:: But! <math>\mu=\mathbb{E}[X]</math>
 
:: But! <math>\mu=\mathbb{E}[X]</math>
 
: <math>=\mathbb{E}\left[X^2\right]-2\mu^2+\mu^2</math>
 
: <math>=\mathbb{E}\left[X^2\right]-2\mu^2+\mu^2</math>
: <math>=\mathbb{E}\left[X^2\right]-\mu</math>
+
: <math>=\mathbb{E}\left[X^2\right]-\mu^2</math>
: <math>=\mathbb{E}\left[X^2\right]-\mathbb{E}[X]</math>
+
: <math>=\mathbb{E}\left[X^2\right]-(\mathbb{E}[X])^2</math>
  
 
As required.
 
As required.

Latest revision as of 19:45, 24 July 2016

Definition

Given an integrable random variable X we define the variance of X as follows:

  • Var(X)=E[(Xμ)2]
    where μ is the mean or expected value of X

Other forms

[Expand]

Theorem: Var(X)=E[X2](E[X])2


References