Variance

From Maths
Jump to: navigation, search

Definition

Given an integrable random variable [ilmath]X[/ilmath] we define the variance of [ilmath]X[/ilmath] as follows:

  • [math]\text{Var}(X)=\mathbb{E}\left[(X-\mu)^2\right][/math] where [ilmath]\mu[/ilmath] is the mean or expected value of [ilmath]X[/ilmath]

Other forms

Theorem: [math]\text{Var}(X)=\mathbb{E}[X^2]-(\mathbb{E}[X])^2[/math]


  • [math]\text{Var}(X)=\mathbb{E}\left[(X-\mu)^2\right][/math]
[math]=\mathbb{E}\left[X^2-2X\mu+\mu^2\right][/math]
[math]=\mathbb{E}\left[X^2\right]-2\mu\mathbb{E}[X]+\mu^2[/math]
But! [math]\mu=\mathbb{E}[X][/math]
[math]=\mathbb{E}\left[X^2\right]-2\mu^2+\mu^2[/math]
[math]=\mathbb{E}\left[X^2\right]-\mu^2[/math]
[math]=\mathbb{E}\left[X^2\right]-(\mathbb{E}[X])^2[/math]

As required.


References