Difference between revisions of "Poisson distribution"
From Maths
(Created page with "{{Stub page|grade=A*|msg=My informal derivation feels too formal, but isn't formal enough to be a formal one! Work in progress!}} ==Derivation== Standard Poisson distribution:...") |
(Added infobox, early definition, mean claim - very sketchy but done none the less.) |
||
Line 1: | Line 1: | ||
{{Stub page|grade=A*|msg=My informal derivation feels too formal, but isn't formal enough to be a formal one! Work in progress!}} | {{Stub page|grade=A*|msg=My informal derivation feels too formal, but isn't formal enough to be a formal one! Work in progress!}} | ||
+ | {{infobox | ||
+ | |title=Poisson distribution | ||
+ | |above=<span style="font-size:1.5em;">{{M|X\sim\text{Poi}(\lambda)}}</span> | ||
+ | |subheader=<span style="font-size:1.2em;">{{M|\lambda\in\mathbb{R}_{\ge 0} }}</span><br/>''({{M|\lambda}} - the average rate of events per unit)'' | ||
+ | |image=file.png | ||
+ | |header1=Definition | ||
+ | |label1=Type | ||
+ | |data1=[[Discrete probability distribution|Discrete]], over {{M|\mathbb{N}_{\ge 0} }} | ||
+ | |label2=[[Probability mass function|p.m.f]] | ||
+ | |data2={{MM|\mathbb{P}[X\eq k]:\eq e^{-\lambda}\frac{\lambda^k}{k!} }} | ||
+ | |label3=[[Cumulative distribution function|c.d.f]] | ||
+ | |data3={{MM|\mathbb{P}[X\le k]\eq e^{-\lambda}\sum^k_{i\eq 0}\frac{\lambda^i}{k!} }} | ||
+ | |header10=Characteristics | ||
+ | |label12=[[Expected value]] | ||
+ | |data12={{M|\mathbb{E}[X]\eq\lambda}} | ||
+ | |label13=[[Variance]] | ||
+ | |data13={{M|\text{Var}(X)\eq\lambda}} | ||
+ | }} | ||
+ | ==Definition== | ||
+ | * {{M|X\sim\text{Poisson}(\lambda)}} | ||
+ | ** for {{M|k\in\mathbb{N}_{\ge 0} }} we have: {{MM|\mathbb{P}[X\eq k]:\eq\frac{e^{-\lambda}\lambda^k}{k!} }} | ||
+ | *** the first 2 terms are easy to give: {{M|e^{\lambda} }} and {{M|\lambda e^{-\lambda} }} respectively, after that we have {{M|\frac{1}{2}\lambda^2 e^{-\lambda} }} and so forth | ||
+ | ** for {{M|k\in\mathbb{N}_{\ge 0} }} we have: {{MM|\mathbb{P}[X\le k]\eq e^{-\lambda}\sum^k_{j\eq 0}\frac{1}{j!}\lambda^j}} | ||
+ | |||
+ | |||
+ | ==Mean== | ||
+ | * {{MM|\sum^\infty_{n\eq 0} n\times\mathbb{P}[X\eq n]\eq\sum^\infty_{n\eq 0}\left[ n\times e^{-\lambda}\frac{\lambda^n}{n!}\right]\eq}}{{MM|0+\left[ e^{-\lambda}\sum^\infty_{n\eq 1} \frac{\lambda^n}{(n-1)!}\right] }}{{MM|\eq e^{-\lambda}\lambda\left[\sum^\infty_{n\eq 1}\frac{\lambda^{n-1} }{(n-1)!}\right]}} | ||
+ | *: {{MM|\eq \lambda e^{-\lambda}\left[\sum^{\infty}_{n\eq 0}\frac{\lambda^n}{n!}\right]}}{{MM|\eq \lambda e^{-\lambda}\left[\lim_{n\rightarrow\infty}\left(\sum^{n}_{k\eq 0}\frac{\lambda^k}{k!}\right)\right]}} | ||
+ | *:* But! {{MM|e^x\eq\lim_{n\rightarrow\infty}\left(\sum^n_{i\eq 0}\frac{x^i}{i!}\right)}} | ||
+ | ** So {{MM|\eq\lambda e^{-\lambda} e^\lambda}} | ||
+ | *** {{M|\eq\lambda}} | ||
==Derivation== | ==Derivation== | ||
Standard Poisson distribution: | Standard Poisson distribution: |
Revision as of 06:53, 20 September 2017
Stub grade: A*
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
My informal derivation feels too formal, but isn't formal enough to be a formal one! Work in progress!
Poisson distribution | |
[ilmath]X\sim\text{Poi}(\lambda)[/ilmath] | |
[ilmath]\lambda\in\mathbb{R}_{\ge 0} [/ilmath] ([ilmath]\lambda[/ilmath] - the average rate of events per unit) | |
file.png | |
Definition | |
---|---|
Type | Discrete, over [ilmath]\mathbb{N}_{\ge 0} [/ilmath] |
p.m.f | [math]\mathbb{P}[X\eq k]:\eq e^{-\lambda}\frac{\lambda^k}{k!} [/math] |
c.d.f | [math]\mathbb{P}[X\le k]\eq e^{-\lambda}\sum^k_{i\eq 0}\frac{\lambda^i}{k!} [/math] |
Characteristics | |
Expected value | [ilmath]\mathbb{E}[X]\eq\lambda[/ilmath] |
Variance | [ilmath]\text{Var}(X)\eq\lambda[/ilmath] |
Contents
Definition
- [ilmath]X\sim\text{Poisson}(\lambda)[/ilmath]
- for [ilmath]k\in\mathbb{N}_{\ge 0} [/ilmath] we have: [math]\mathbb{P}[X\eq k]:\eq\frac{e^{-\lambda}\lambda^k}{k!} [/math]
- the first 2 terms are easy to give: [ilmath]e^{\lambda} [/ilmath] and [ilmath]\lambda e^{-\lambda} [/ilmath] respectively, after that we have [ilmath]\frac{1}{2}\lambda^2 e^{-\lambda} [/ilmath] and so forth
- for [ilmath]k\in\mathbb{N}_{\ge 0} [/ilmath] we have: [math]\mathbb{P}[X\le k]\eq e^{-\lambda}\sum^k_{j\eq 0}\frac{1}{j!}\lambda^j[/math]
- for [ilmath]k\in\mathbb{N}_{\ge 0} [/ilmath] we have: [math]\mathbb{P}[X\eq k]:\eq\frac{e^{-\lambda}\lambda^k}{k!} [/math]
Mean
- [math]\sum^\infty_{n\eq 0} n\times\mathbb{P}[X\eq n]\eq\sum^\infty_{n\eq 0}\left[ n\times e^{-\lambda}\frac{\lambda^n}{n!}\right]\eq[/math][math]0+\left[ e^{-\lambda}\sum^\infty_{n\eq 1} \frac{\lambda^n}{(n-1)!}\right] [/math][math]\eq e^{-\lambda}\lambda\left[\sum^\infty_{n\eq 1}\frac{\lambda^{n-1} }{(n-1)!}\right][/math]
- [math]\eq \lambda e^{-\lambda}\left[\sum^{\infty}_{n\eq 0}\frac{\lambda^n}{n!}\right][/math][math]\eq \lambda e^{-\lambda}\left[\lim_{n\rightarrow\infty}\left(\sum^{n}_{k\eq 0}\frac{\lambda^k}{k!}\right)\right][/math]
- But! [math]e^x\eq\lim_{n\rightarrow\infty}\left(\sum^n_{i\eq 0}\frac{x^i}{i!}\right)[/math]
- So [math]\eq\lambda e^{-\lambda} e^\lambda[/math]
- [ilmath]\eq\lambda[/ilmath]
- [math]\eq \lambda e^{-\lambda}\left[\sum^{\infty}_{n\eq 0}\frac{\lambda^n}{n!}\right][/math][math]\eq \lambda e^{-\lambda}\left[\lim_{n\rightarrow\infty}\left(\sum^{n}_{k\eq 0}\frac{\lambda^k}{k!}\right)\right][/math]
Derivation
Standard Poisson distribution:
- Let [ilmath]S:\eq[0,1)\subseteq\mathbb{R} [/ilmath], recall that means [ilmath]S\eq\{x\in\mathbb{R}\ \vert\ 0\le x<1\} [/ilmath]
- Let [ilmath]\lambda[/ilmath] be the average count of some event that can occur [ilmath]0[/ilmath] or more times on [ilmath]S[/ilmath]
We will now divide [ilmath]S[/ilmath] up into [ilmath]N[/ilmath] equally sized chunks, for [ilmath]N\in\mathbb{N}_{\ge 1} [/ilmath]
- Let [ilmath]S_{i,N}:\eq\left[\frac{i-1}{N},\frac{i}{N}\right)[/ilmath][Note 1] for [ilmath]i\in\{1,\ldots,N\}\subseteq\mathbb{N} [/ilmath]
We will now define a random variable that counts the occurrences of events per interval.
- Let [ilmath]C\big(S_{i,N}\big)[/ilmath] be the RV such that its value is the number of times the event occurred in the [ilmath]\left[\frac{i-1}{N},\frac{i}{N}\right)[/ilmath] interval
We now require:
- [math]\lim_{N\rightarrow\infty}\left(\mathbb{P}[C\big(S_{i,N}\big)\ge 2]\right)\eq 0[/math] - such that:
- as the [ilmath]S_{i,N} [/ilmath] get smaller the chance of 2 or more events occurring in the space reaches zero.
- Warning:This is phrased as a limit, I'm not sure it should be as we don't have any [ilmath]S_{i,\infty} [/ilmath] so no [ilmath]\text{BORV}(\frac{\lambda}{N})[/ilmath] distribution then either
Note that:
- [math]\lim_{N\rightarrow\infty}\big(C(S_{i,N})\big)\eq\lim_{N\rightarrow\infty}\left(\text{BORV}\left(\frac{\lambda}{N}\right)\right) [/math]
- This is supposed to convey that the distribution of [ilmath]C(S_{i,N})[/ilmath] as [ilmath]N[/ilmath] gets large gets arbitrarily close to [ilmath]\text{BORV}(\frac{\lambda}{N})[/ilmath]
So we may say for sufficiently large [ilmath]N[/ilmath] that:
- [math]C(S_{i,N})\mathop{\sim}_{\text{(approx)} } [/math][ilmath]\text{BORV}(\frac{\lambda}{N})[/ilmath], so that:
- [ilmath]\mathbb{P}[C(S_{i,N})\eq 0]\approx(1-\frac{\lambda}{N}) [/ilmath]
- [ilmath]\mathbb{P}[C(S_{i,N})\eq 1]\approx \frac{\lambda}{N} [/ilmath], and of course
- [ilmath]\mathbb{P}[C(S_{i,N})\ge 2]\approx 0[/ilmath]
Assuming the [ilmath]C(S_{i,N})[/ilmath] are independent over [ilmath]i[/ilmath] (which surely we get from the [ilmath]\text{BORV} [/ilmath] distributions?) we see:
- [math]C(S)\mathop{\sim}_{\text{(approx)} } [/math][ilmath]\text{Bin} [/ilmath][math]\left(N,\frac{\lambda}{N}\right)[/math] or, more specifically: [math]C(S)\eq\lim_{N\rightarrow\infty}\Big(\sum^N_{i\eq 1}C(S_{i,N})\Big)\eq\lim_{N\rightarrow\infty}\left(\text{Bin}\left(N,\frac{\lambda}{N}\right)\right)[/math]
We see:
- [math]\mathbb{P}[C(S)\eq k]\eq\lim_{N\rightarrow\infty} [/math][ilmath]\Big(\mathbb{P}\big[\text{Bin}(N,\frac{\lambda}{N})\eq k\big]\Big)[/ilmath][math]\eq\lim_{N\rightarrow\infty}\left({}^N\!C_k\ \left(\frac{\lambda}{N}\right)^k\left(1-\frac{\lambda}{N}\right)^{N-k}\right)[/math]
We claim that:
- [math]\lim_{N\rightarrow\infty}\left({}^N\!C_k\ \left(\frac{\lambda}{N}\right)^k\left(1-\frac{\lambda}{N}\right)^{N-k}\right)\eq \frac{\lambda^k}{k!}e^{-\lambda} [/math]
We will tackle this in two parts:
- [math]\lim_{N\rightarrow\infty}\Bigg(\underbrace{ {}^N\!C_k\ \left(\frac{\lambda}{N}\right)^k}_{A}\ \underbrace{\left(1-\frac{\lambda}{N}\right)^{N-k} }_{B}\Bigg)[/math] where [ilmath]B\rightarrow e^{-\lambda} [/ilmath] and [math]A\rightarrow \frac{\lambda^k}{k!} [/math]
Proof
Key notes:
A
Notice:
- [math]{}^N\!C_k\ \left(\frac{\lambda}{N}\right)^k \eq \frac{N!}{(N-k)!k!}\cdot\frac{1}{N^k}\cdot\lambda^k[/math]
- [math]\eq\frac{1}{k!}\cdot\frac{\overbrace{N(N-1)\cdots(N-k+2)(N-k+1)}^{k\text{ terms} } }{\underbrace{N\cdot N\cdots N}_{k\text{ times} } } \cdot\lambda^k[/math]
- Notice that as [ilmath]N[/ilmath] gets bigger [ilmath]N-k+1[/ilmath] is "basically" [ilmath]N[/ilmath] so the [ilmath]N[/ilmath]s in the denominator cancel (in fact the value will be slightly less than 1, tending towards 1 as [ilmath]N\rightarrow\infty[/ilmath]) this giving:
- [math]\frac{\lambda^k}{k!} [/math]
B
This comes from:
- [math]e^x:\eq\lim_{n\rightarrow\infty}\left(\left(1+\frac{x}{n}\right)^n\right)[/math], so we get the [ilmath]e^{-\lambda} [/ilmath] term.
Notes
- ↑ Recall again that means [ilmath]\{x\in\mathbb{R}\ \vert\ \frac{i-1}{N}\le x < \frac{i}{N} \} [/ilmath]