Difference between revisions of "Variance"
From Maths
(Created page with "==Definition== Given a random variable {{M|X}} we define the '''variance''' of {{M|X}} as follows: * <math>\text{Var}(X)=\mathbb{E}\left[(X-\mu)^2\right]</...") |
m (→Other forms) |
||
Line 13: | Line 13: | ||
:: But! <math>\mu=\mathbb{E}[X]</math> | :: But! <math>\mu=\mathbb{E}[X]</math> | ||
: <math>=\mathbb{E}\left[X^2\right]-2\mu^2+\mu^2</math> | : <math>=\mathbb{E}\left[X^2\right]-2\mu^2+\mu^2</math> | ||
− | : <math>=\mathbb{E}\left[X^2\right]-\mu</math> | + | : <math>=\mathbb{E}\left[X^2\right]-\mu^2</math> |
− | : <math>=\mathbb{E}\left[X^2\right]-\mathbb{E}[X]</math> | + | : <math>=\mathbb{E}\left[X^2\right]-(\mathbb{E}[X])^2</math> |
As required. | As required. |
Revision as of 23:57, 29 April 2015
Definition
Given a random variable [ilmath]X[/ilmath] we define the variance of [ilmath]X[/ilmath] as follows:
- [math]\text{Var}(X)=\mathbb{E}\left[(X-\mu)^2\right][/math] where [ilmath]\mu[/ilmath] is the mean or expected value of [ilmath]X[/ilmath]
Other forms
Theorem: [math]\text{Var}(X)=\mathbb{E}[X^2]+(\mathbb{E}[X])^2[/math]
- [math]\text{Var}(X)=\mathbb{E}\left[(X-\mu)^2\right][/math]
- [math]=\mathbb{E}\left[X^2-2X\mu+\mu^2\right][/math]
- [math]=\mathbb{E}\left[X^2\right]-2\mu\mathbb{E}[X]+\mu^2[/math]
- But! [math]\mu=\mathbb{E}[X][/math]
- [math]=\mathbb{E}\left[X^2\right]-2\mu^2+\mu^2[/math]
- [math]=\mathbb{E}\left[X^2\right]-\mu^2[/math]
- [math]=\mathbb{E}\left[X^2\right]-(\mathbb{E}[X])^2[/math]
As required.