Difference between revisions of "Variance"

From Maths
Jump to: navigation, search
(Created page with "==Definition== Given a random variable {{M|X}} we define the '''variance''' of {{M|X}} as follows: * <math>\text{Var}(X)=\mathbb{E}\left[(X-\mu)^2\right]</...")
 
m (Other forms)
Line 13: Line 13:
 
:: But! <math>\mu=\mathbb{E}[X]</math>
 
:: But! <math>\mu=\mathbb{E}[X]</math>
 
: <math>=\mathbb{E}\left[X^2\right]-2\mu^2+\mu^2</math>
 
: <math>=\mathbb{E}\left[X^2\right]-2\mu^2+\mu^2</math>
: <math>=\mathbb{E}\left[X^2\right]-\mu</math>
+
: <math>=\mathbb{E}\left[X^2\right]-\mu^2</math>
: <math>=\mathbb{E}\left[X^2\right]-\mathbb{E}[X]</math>
+
: <math>=\mathbb{E}\left[X^2\right]-(\mathbb{E}[X])^2</math>
  
 
As required.
 
As required.

Revision as of 23:57, 29 April 2015

Definition

Given a random variable [ilmath]X[/ilmath] we define the variance of [ilmath]X[/ilmath] as follows:

  • [math]\text{Var}(X)=\mathbb{E}\left[(X-\mu)^2\right][/math] where [ilmath]\mu[/ilmath] is the mean or expected value of [ilmath]X[/ilmath]


Other forms

Theorem: [math]\text{Var}(X)=\mathbb{E}[X^2]+(\mathbb{E}[X])^2[/math]


  • [math]\text{Var}(X)=\mathbb{E}\left[(X-\mu)^2\right][/math]
[math]=\mathbb{E}\left[X^2-2X\mu+\mu^2\right][/math]
[math]=\mathbb{E}\left[X^2\right]-2\mu\mathbb{E}[X]+\mu^2[/math]
But! [math]\mu=\mathbb{E}[X][/math]
[math]=\mathbb{E}\left[X^2\right]-2\mu^2+\mu^2[/math]
[math]=\mathbb{E}\left[X^2\right]-\mu^2[/math]
[math]=\mathbb{E}\left[X^2\right]-(\mathbb{E}[X])^2[/math]

As required.


References