Expectation of the geometric distribution
From Maths
Stub grade: A
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Finish in morning
\newcommand{\P}[2][]{\mathbb{P}#1{\left[{#2}\right]} } \newcommand{\Pcond}[3][]{\mathbb{P}#1{\left[{#2}\!\ \middle\vert\!\ {#3}\right]} } \newcommand{\Plcond}[3][]{\Pcond[#1]{#2}{#3} } \newcommand{\Prcond}[3][]{\Pcond[#1]{#2}{#3} }
\newcommand{\E}[1]{ {\mathbb{E}{\left[{#1}\right]} } } \newcommand{\Mdm}[1]{\text{Mdm}{\left({#1}\right) } } \newcommand{\Var}[1]{\text{Var}{\left({#1}\right) } } \newcommand{\ncr}[2]{ \vphantom{C}^{#1}\!C_{#2} }
Contents
[hide]Statement
Let X\sim\text{Geo} (p) where p is the probability of any trial being a success, and each trial is i.i.d as X_i\sim\text{Borv} (p), from this we have:
- For k\in\mathbb{N}_{\ge 1} that \P{X\eq k}\eq p(1-p)^{k-1}
We now define q:\eq 1-p as this will simplify calculations further on, meaning that now:
- For k\in\mathbb{N}_{\ge 1} that \P{X\eq k}\eq pq^{k-1}
- The expectation of X is:
- We claim that that \E{X}\eq\frac{1}{p} for p\in(0,1]\subseteq\mathbb{R} and undefined for p\eq 0
To do so we will consider the 3 cases, p\eq 0, p\in (0,1)\subseteq\mathbb{R} and p\eq 1 separately and in reverse of this order.
See also
Proof
We introduce the following for short.
- S'_n:\eq\sum^n_{k\eq 1}kpq^{k-1} - this forms the sequence used in the limit - which is a series.
- Thus \E{X}\eq\lim_{n\rightarrow\infty}\Big(S'_n\Big)
- S_n:\eq\sum^n_{k\eq 1}kq^{k-1}
- This comes from the sequence inside the limit, \sum^n_{k\eq 1}k\P{X\eq k}\eq\sum^n_{k\eq 1}kpq^{k-1}\eq p\sum^n_{k\eq 1} kq^{k-1} \eq pS_n, so:
- \E{X}\eq\lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}k\P{X\eq k}\right)\eq\lim_{n\rightarrow\infty}\Big(pS_n\Big)
- This comes from the sequence inside the limit, \sum^n_{k\eq 1}k\P{X\eq k}\eq\sum^n_{k\eq 1}kpq^{k-1}\eq p\sum^n_{k\eq 1} kq^{k-1} \eq pS_n, so:
Notice that S'_n\eq pS_n - introduced purely to save typing.
Case 1: p\eq 1
Notice that in this case, q\eq 1-p\eq 0.
We now consider the S'_n terms:
- S'_n\eq pS_n\eq p\left(\sum^n_{k\eq 1}kq^{k-1}\right) - 0^0 comes up here
Case 2: p\in (0,1)\subseteq\mathbb{R}
Here we use:
- \frac{\mathrm{d} }{\mathrm{d}q}\Big[q^k\Big]\Bigg\vert_q\eq kq^{k-1} and then the \sum^n_{k\eq 1}q^k is a geometric series - starting at q though not 1
Notes
Categories:
- Stub pages
- Theorems
- Theorems, lemmas and corollaries
- Probability Theorems
- Probability Theorems, lemmas and corollaries
- Probability
- Elementary Probability Theorems
- Elementary Probability Theorems, lemmas and corollaries
- Elementary Probability
- Statistics Theorems
- Statistics Theorems, lemmas and corollaries
- Statistics
- Variance Calculations