Expectation of the geometric distribution
From Maths
Stub grade: A
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Finish in morning
\newcommand{\P}[2][]{\mathbb{P}#1{\left[{#2}\right]} } \newcommand{\Pcond}[3][]{\mathbb{P}#1{\left[{#2}\!\ \middle\vert\!\ {#3}\right]} } \newcommand{\Plcond}[3][]{\Pcond[#1]{#2}{#3} } \newcommand{\Prcond}[3][]{\Pcond[#1]{#2}{#3} }
\newcommand{\E}[1]{ {\mathbb{E}{\left[{#1}\right]} } } \newcommand{\Mdm}[1]{\text{Mdm}{\left({#1}\right) } } \newcommand{\Var}[1]{\text{Var}{\left({#1}\right) } } \newcommand{\ncr}[2]{ \vphantom{C}^{#1}\!C_{#2} } \newcommand{\d}[0]{\mathrm{d} }
Contents
[hide]Statement
Let X\sim\text{Geo} (p) where p is the probability of any trial being a success, and each trial is i.i.d as X_i\sim\text{Borv} (p), from this we have:
- For k\in\mathbb{N}_{\ge 1} that \P{X\eq k}\eq p(1-p)^{k-1}
We now define q:\eq 1-p as this will simplify calculations further on, meaning that now:
- For k\in\mathbb{N}_{\ge 1} that \P{X\eq k}\eq pq^{k-1}
- The expectation of X is:
- We claim that that \E{X}\eq\frac{1}{p} for p\in(0,1]\subseteq\mathbb{R} and undefined for p\eq 0
To do so we will consider the 3 cases, p\eq 0, p\in (0,1)\subseteq\mathbb{R} and p\eq 1 separately and in reverse of this order.
See also
Proof
We introduce the following for short.
- S'_n:\eq\sum^n_{k\eq 1}kpq^{k-1} - this forms the sequence used in the limit - which is a series.
- Thus \E{X}\eq\lim_{n\rightarrow\infty}\Big(S'_n\Big)
- S_n:\eq\sum^n_{k\eq 1}kq^{k-1}
- This comes from the sequence inside the limit, \sum^n_{k\eq 1}k\P{X\eq k}\eq\sum^n_{k\eq 1}kpq^{k-1}\eq p\sum^n_{k\eq 1} kq^{k-1} \eq pS_n, so:
- \E{X}\eq\lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}k\P{X\eq k}\right)\eq\lim_{n\rightarrow\infty}\Big(pS_n\Big)
- This comes from the sequence inside the limit, \sum^n_{k\eq 1}k\P{X\eq k}\eq\sum^n_{k\eq 1}kpq^{k-1}\eq p\sum^n_{k\eq 1} kq^{k-1} \eq pS_n, so:
Notice that S'_n\eq pS_n - introduced purely to save typing.
Case 1: p\eq 1
Notice that in this case, q\eq 1-p\eq 0.
We now consider the S'_n terms:
- S'_n\eq pS_n\eq p\left(\sum^n_{k\eq 1}kq^{k-1}\right) - 0^0 comes up here
Case 2: p\in (0,1)\subseteq\mathbb{R} - TODO: EXTENSION
- TODO: This case can be extended to p\in (0,1] and should beas there's no reason we can't cope with the q\eq 0 case -TODO: SORT THIS OUT
- \frac{\mathrm{d} }{\mathrm{d}q}\Big[q^k\Big]\Bigg\vert_q\eq kq^{k-1} which is the first result covered in differentiation[Note 1]
- \sum^n_{k\eq 1}r^{k-1}\eq \frac{1-r^n}{1-r} (from the result on the geometric series page), and,
- Note that \sum_{k\eq 1}^nr^k\eq r\sum^n_{k\eq 1}r^{k-1} so we will really use:
- \sum^n_{k\eq 1}r^k\eq r\frac{1-r^n}{1-r}
- Note that \sum_{k\eq 1}^nr^k\eq r\sum^n_{k\eq 1}r^{k-1} so we will really use:
Proof:
- Let p\in(0,1)\subseteq\mathbb{R} be given, and let X\sim\text{Geo} (p) so \P{X\eq k}:\eq (1-p)^{k-1}p for k\in\mathbb{N}_{\ge 1} , now:
- \E{X}:\eq\sum^\infty_{k\eq 1}k\cdot\P{X\eq k}\eq \sum^\infty_{k\eq 1}k(1-p)^{k-1}p\eq p\sum^\infty_{k\eq 1}kq^{k-1} where we have substituted q^{k-1} for (1-p)^{k-1} at the end there.
- We use the first lemma described above to observe that kq^{k-1}\eq\frac{\d }{\d q}\Big[q^k\Big]\Big\vert_q, thus:
- \E{X}\eq p\sum^\infty_{k\eq 1}\frac{\d}{\d q}\Big[q^k\Big]\Big\vert_q
- \eq p\cdot\left(\frac{\d}{\d q}\left[\sum^\infty_{k\eq 1}q^k\middle]\right\vert_q\right)[Note 2]
- \E{X}\eq p\sum^\infty_{k\eq 1}\frac{\d}{\d q}\Big[q^k\Big]\Big\vert_q
- We use the first lemma described above to observe that kq^{k-1}\eq\frac{\d }{\d q}\Big[q^k\Big]\Big\vert_q, thus:
- We now work on the expression: \sum^\infty_{k\eq 1}q^k, taking it as \lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}q^k\right) and operate on the \sum^n_{k\eq 1}q^k first
- By the second lemma above:
- \sum^n_{k\eq 1}q^k\eq q\frac{1-q^n}{1-q}
- \eq \frac{q}{1-q}\cdot(1-q^n)
- \sum^n_{k\eq 1}q^k\eq q\frac{1-q^n}{1-q}
- Now we consider \lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}q^k\right) ,
- \lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}q^k\right) \eq \lim_{n\rightarrow\infty}\left(\frac{q}{1-q}\cdot(1-q^n) \right)
- \eq\frac{q}{1-q}\cdot\lim_{n\rightarrow\infty}\Big((1-q^n)\Big)
- Let us operate on the \lim_{n\rightarrow\infty}\Big((1-q^n)\Big) now
- We have three cases, q\eq 0, q\in(0,1) and q\eq 1 - But as we are explicitly in the q\in(0,1) case we don't need to consider them really, we do so for demonstration purposes only
- All of these are applications of limit of integer powers of a real value
- q\eq 0 then obviously 0^n for n\in\mathbb{N}_{\ge 1} is always 0 (with 0^0 "disputed" but not relevant here) so
- \lim_{n\rightarrow\infty}(1-q^n)\eq 1-0\eq 1
- q\in(0,1) then q^n gets smaller as n increases so q^n\rightarrow 0 so 1-q^n\rightarrow 1, thus
- \lim_{n\rightarrow\infty}(1-q^n)\eq 1-0\eq 1 also
- q\eq 1 then q^n\eq 1 always so
- \lim_{n\rightarrow\infty}(1-q^n)\eq 1-1\eq 0
- q\eq 0 then obviously 0^n for n\in\mathbb{N}_{\ge 1} is always 0 (with 0^0 "disputed" but not relevant here) so
- So we see that q\in [0,1) [Note 3] means that \lim_{n\rightarrow\infty}(1-q^n)\eq 1
- Substituting our findings we see for the relevant range of this case that:
- \frac{q}{1-q}\cdot\lim_{n\rightarrow\infty}\Big((1-q^n)\Big) \eq \frac{q}{1-q}
- Thus:
- \sum^\infty_{k\eq 1}q^k:\eq \lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}q^k\right) \eq \frac{q}{1-q}
- \lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}q^k\right) \eq \lim_{n\rightarrow\infty}\left(\frac{q}{1-q}\cdot(1-q^n) \right)
- By the second lemma above:
- We combine this into our expression for \E{X} :
- \E{X}\eq p\cdot\left(\frac{\d}{\d q}\left[\sum^\infty_{k\eq 1}q^k\middle]\right\vert_q\right)
- \eq p\cdot\frac{\d}{\d q}\left[\frac{q}{1-q}\middle]\right\vert_q
- We now operate on \frac{\d}{\d q}\big[q\cdot (1-q)^{-1}\big]\big\vert_q and - as writing it this way implies - will use the product rule:
- \frac{\d}{\d q}\Big[q\cdot (1-q)^{-1}\Big]\Big\vert_q \eq q\frac{\d}{\d q}\left[(1-q)^{-1}\middle]\right\vert_q+\frac{1}{1-q}\frac{\d}{\d q}\left[q\right]\Big\vert_q
- \eq\frac{-q}{(1-q)^2}\cdot\frac{\d}{\d q}\Big[(1-q)\Big]\Big\vert_q +\frac{1}{1-q} - notice the chain ruling being applied here
- \eq\frac{-q}{(1-q)^2}(-1) +\frac{1}{1-q}
- \eq \frac{1}{1-q}\left(1+\frac{q}{1-q}\right)
- \eq \frac{1}{1-q}\left(\frac{1-q}{1-q}+\frac{q}{1-q}\right)
- \eq \frac{1}{1-q}\left(\frac{1}{1-q}\right)
- \eq\frac{1}{(1-q)^2} or \eq (1-q)^{-2}
- Finally: \frac{\d}{\d q}\big[q\cdot (1-q)^{-1}\big]\big\vert_q \eq \frac{1}{(1-q)^2}
- So now we have: \E{X} \eq p\cdot\frac{\d}{\d q}\left[\frac{q}{1-q}\middle]\right\vert_q\eq p\frac{1}{(1-q)^2}
- \frac{\d}{\d q}\Big[q\cdot (1-q)^{-1}\Big]\Big\vert_q \eq q\frac{\d}{\d q}\left[(1-q)^{-1}\middle]\right\vert_q+\frac{1}{1-q}\frac{\d}{\d q}\left[q\right]\Big\vert_q
- Lastly we operate on \E{X}\eq p\frac{1}{(1-q)^2}
- Recall that q:\eq 1-p so 1-q\eq 1-(1-p)\eq 1-1+p\eq p - we have 1-q\eq p now, substitute this in and we see:
- \E{X}\eq p\frac{1}{p^2}
- \eq \frac{1}{p}
- \E{X}\eq p\frac{1}{p^2}
- Recall that q:\eq 1-p so 1-q\eq 1-(1-p)\eq 1-1+p\eq p - we have 1-q\eq p now, substitute this in and we see:
- \E{X}\eq p\cdot\left(\frac{\d}{\d q}\left[\sum^\infty_{k\eq 1}q^k\middle]\right\vert_q\right)
- So we have \E{X}\eq \frac{1}{p} given our value of p
- \E{X}:\eq\sum^\infty_{k\eq 1}k\cdot\P{X\eq k}\eq \sum^\infty_{k\eq 1}k(1-p)^{k-1}p\eq p\sum^\infty_{k\eq 1}kq^{k-1} where we have substituted q^{k-1} for (1-p)^{k-1} at the end there.
- Since our choice of p\in(0,1) was arbitrary we have shown:
- \forall p\in(0,1)\left[\E{\text{Geo}(p)}\eq\frac{1}{p}\right] - as required
Notes
- Jump up ↑ I'd really like to link to something here so TODO: Link to the actual result!
- Jump up ↑ Remember \sum^\infty_{k\eq 1}a_k is just short hand for \lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}a_k\right) - see limits and limit of a series - and remember that \frac{\d}{\d x}\Big[f(x)\Big]\Big\vert_x+\frac{\d}{\d x}\Big[g(x)\Big]\Big\vert_x\eq\frac{\d}{\d x}\Big[f(x)+g(x)\Big]\Big\vert_x - as per linearity of the derivative.
- TODO: More links?
-
- Jump up ↑ I'm extending the range slightly but as (0,1)\subseteq [0,1) we're fine to do so
Categories:
- XXX Todo
- Stub pages
- Theorems
- Theorems, lemmas and corollaries
- Probability Theorems
- Probability Theorems, lemmas and corollaries
- Probability
- Elementary Probability Theorems
- Elementary Probability Theorems, lemmas and corollaries
- Elementary Probability
- Statistics Theorems
- Statistics Theorems, lemmas and corollaries
- Statistics
- Expectation Calculations