Expectation of the geometric distribution

From Maths
Jump to: navigation, search
Stub grade: A
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Finish in morning
\newcommand{\P}[2][]{\mathbb{P}#1{\left[{#2}\right]} } \newcommand{\Pcond}[3][]{\mathbb{P}#1{\left[{#2}\!\ \middle\vert\!\ {#3}\right]} } \newcommand{\Plcond}[3][]{\Pcond[#1]{#2}{#3} } \newcommand{\Prcond}[3][]{\Pcond[#1]{#2}{#3} }
\newcommand{\E}[1]{ {\mathbb{E}{\left[{#1}\right]} } } \newcommand{\Mdm}[1]{\text{Mdm}{\left({#1}\right) } } \newcommand{\Var}[1]{\text{Var}{\left({#1}\right) } } \newcommand{\ncr}[2]{ \vphantom{C}^{#1}\!C_{#2} } \newcommand{\d}[0]{\mathrm{d} }

Statement

Let X\sim\text{Geo} (p) where p is the probability of any trial being a success, and each trial is i.i.d as X_i\sim\text{Borv} (p), from this we have:

  • For k\in\mathbb{N}_{\ge 1} that \P{X\eq k}\eq p(1-p)^{k-1}

We now define q:\eq 1-p as this will simplify calculations further on, meaning that now:

  • For k\in\mathbb{N}_{\ge 1} that \P{X\eq k}\eq pq^{k-1}


Expectation

  • The expectation of X is:
    • \sum^\infty_{k\eq 1}k\P{X\eq k} which of course is actually a limit of a series, \lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}k\P{X\eq k}\right)
We claim that that \E{X}\eq\frac{1}{p} for p\in(0,1]\subseteq\mathbb{R} and undefined for p\eq 0


To do so we will consider the 3 cases, p\eq 0, p\in (0,1)\subseteq\mathbb{R} and p\eq 1 separately and in reverse of this order.

See also

Proof

We introduce the following for short.

  1. S'_n:\eq\sum^n_{k\eq 1}kpq^{k-1} - this forms the sequence used in the limit - which is a series.
    • Thus \E{X}\eq\lim_{n\rightarrow\infty}\Big(S'_n\Big)
  2. S_n:\eq\sum^n_{k\eq 1}kq^{k-1}
    • This comes from the sequence inside the limit, \sum^n_{k\eq 1}k\P{X\eq k}\eq\sum^n_{k\eq 1}kpq^{k-1}\eq p\sum^n_{k\eq 1} kq^{k-1} \eq pS_n, so:
      • \E{X}\eq\lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}k\P{X\eq k}\right)\eq\lim_{n\rightarrow\infty}\Big(pS_n\Big)

Notice that S'_n\eq pS_n - introduced purely to save typing.

Case 1: p\eq 1

Notice that in this case, q\eq 1-p\eq 0.

We now consider the S'_n terms:

  • S'_n\eq pS_n\eq p\left(\sum^n_{k\eq 1}kq^{k-1}\right) - 0^0 comes up here

Case 2: p\in (0,1)\subseteq\mathbb{R} -
TODO: EXTENSION

TODO: This case can be extended to p\in (0,1] and should be
as there's no reason we can't cope with the q\eq 0 case -
TODO: SORT THIS OUT

Lemmas used:

  1. \frac{\mathrm{d} }{\mathrm{d}q}\Big[q^k\Big]\Bigg\vert_q\eq kq^{k-1} which is the first result covered in differentiation[Note 1]
  2. \sum^n_{k\eq 1}r^{k-1}\eq \frac{1-r^n}{1-r} (from the result on the geometric series page), and,
    • Note that \sum_{k\eq 1}^nr^k\eq r\sum^n_{k\eq 1}r^{k-1} so we will really use:
      • \sum^n_{k\eq 1}r^k\eq r\frac{1-r^n}{1-r}


Proof:

  • Let p\in(0,1)\subseteq\mathbb{R} be given, and let X\sim\text{Geo} (p) so \P{X\eq k}:\eq (1-p)^{k-1}p for k\in\mathbb{N}_{\ge 1} , now:
    • \E{X}:\eq\sum^\infty_{k\eq 1}k\cdot\P{X\eq k}\eq \sum^\infty_{k\eq 1}k(1-p)^{k-1}p\eq p\sum^\infty_{k\eq 1}kq^{k-1} where we have substituted q^{k-1} for (1-p)^{k-1} at the end there.
      • We use the first lemma described above to observe that kq^{k-1}\eq\frac{\d }{\d q}\Big[q^k\Big]\Big\vert_q, thus:
        • \E{X}\eq p\sum^\infty_{k\eq 1}\frac{\d}{\d q}\Big[q^k\Big]\Big\vert_q
          \eq p\cdot\left(\frac{\d}{\d q}\left[\sum^\infty_{k\eq 1}q^k\middle]\right\vert_q\right)[Note 2]
    • We now work on the expression: \sum^\infty_{k\eq 1}q^k, taking it as \lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}q^k\right) and operate on the \sum^n_{k\eq 1}q^k first
      • By the second lemma above:
        • \sum^n_{k\eq 1}q^k\eq q\frac{1-q^n}{1-q}
          \eq \frac{q}{1-q}\cdot(1-q^n)
      • Now we consider \lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}q^k\right) ,
        • \lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}q^k\right) \eq \lim_{n\rightarrow\infty}\left(\frac{q}{1-q}\cdot(1-q^n) \right)
          \eq\frac{q}{1-q}\cdot\lim_{n\rightarrow\infty}\Big((1-q^n)\Big)
        • Let us operate on the \lim_{n\rightarrow\infty}\Big((1-q^n)\Big) now
          • We have three cases, q\eq 0, q\in(0,1) and q\eq 1 - But as we are explicitly in the q\in(0,1) case we don't need to consider them really, we do so for demonstration purposes only
          All of these are applications of limit of integer powers of a real value
          1. q\eq 0 then obviously 0^n for n\in\mathbb{N}_{\ge 1} is always 0 (with 0^0 "disputed" but not relevant here) so
            • \lim_{n\rightarrow\infty}(1-q^n)\eq 1-0\eq 1
          2. q\in(0,1) then q^n gets smaller as n increases so q^n\rightarrow 0 so 1-q^n\rightarrow 1, thus
            • \lim_{n\rightarrow\infty}(1-q^n)\eq 1-0\eq 1 also
          3. q\eq 1 then q^n\eq 1 always so
            • \lim_{n\rightarrow\infty}(1-q^n)\eq 1-1\eq 0
          • So we see that q\in [0,1) [Note 3] means that \lim_{n\rightarrow\infty}(1-q^n)\eq 1
        • Substituting our findings we see for the relevant range of this case that:
          • \frac{q}{1-q}\cdot\lim_{n\rightarrow\infty}\Big((1-q^n)\Big) \eq \frac{q}{1-q}
        • Thus:
          • \sum^\infty_{k\eq 1}q^k:\eq \lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}q^k\right) \eq \frac{q}{1-q}
    • We combine this into our expression for \E{X} :
      • \E{X}\eq p\cdot\left(\frac{\d}{\d q}\left[\sum^\infty_{k\eq 1}q^k\middle]\right\vert_q\right)
        \eq p\cdot\frac{\d}{\d q}\left[\frac{q}{1-q}\middle]\right\vert_q
      • We now operate on \frac{\d}{\d q}\big[q\cdot (1-q)^{-1}\big]\big\vert_q and - as writing it this way implies - will use the product rule:
        • \frac{\d}{\d q}\Big[q\cdot (1-q)^{-1}\Big]\Big\vert_q \eq q\frac{\d}{\d q}\left[(1-q)^{-1}\middle]\right\vert_q+\frac{1}{1-q}\frac{\d}{\d q}\left[q\right]\Big\vert_q
          \eq\frac{-q}{(1-q)^2}\cdot\frac{\d}{\d q}\Big[(1-q)\Big]\Big\vert_q +\frac{1}{1-q} - notice the chain ruling being applied here
          \eq\frac{-q}{(1-q)^2}(-1) +\frac{1}{1-q}
          \eq \frac{1}{1-q}\left(1+\frac{q}{1-q}\right)
          \eq \frac{1}{1-q}\left(\frac{1-q}{1-q}+\frac{q}{1-q}\right)
          \eq \frac{1}{1-q}\left(\frac{1}{1-q}\right)
          \eq\frac{1}{(1-q)^2} or \eq (1-q)^{-2}
        • Finally: \frac{\d}{\d q}\big[q\cdot (1-q)^{-1}\big]\big\vert_q \eq \frac{1}{(1-q)^2}
          • So now we have: \E{X} \eq p\cdot\frac{\d}{\d q}\left[\frac{q}{1-q}\middle]\right\vert_q\eq p\frac{1}{(1-q)^2}
      • Lastly we operate on \E{X}\eq p\frac{1}{(1-q)^2}
        • Recall that q:\eq 1-p so 1-q\eq 1-(1-p)\eq 1-1+p\eq p - we have 1-q\eq p now, substitute this in and we see:
          • \E{X}\eq p\frac{1}{p^2}
            \eq \frac{1}{p}
    • So we have \E{X}\eq \frac{1}{p} given our value of p
  • Since our choice of p\in(0,1) was arbitrary we have shown:
    • \forall p\in(0,1)\left[\E{\text{Geo}(p)}\eq\frac{1}{p}\right] - as required

Notes

  1. Jump up I'd really like to link to something here so
    TODO: Link to the actual result!
  2. Jump up Remember \sum^\infty_{k\eq 1}a_k is just short hand for \lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}a_k\right) - see limits and limit of a series - and remember that \frac{\d}{\d x}\Big[f(x)\Big]\Big\vert_x+\frac{\d}{\d x}\Big[g(x)\Big]\Big\vert_x\eq\frac{\d}{\d x}\Big[f(x)+g(x)\Big]\Big\vert_x - as per linearity of the derivative.
    • TODO: More links?
  3. Jump up I'm extending the range slightly but as (0,1)\subseteq [0,1) we're fine to do so